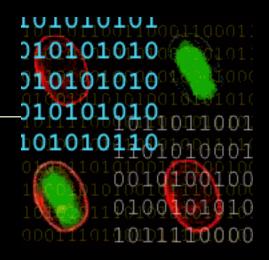
The nexus of biology and computing

Small scale and complexity are forcing advances in computational methodologies

NIH BCIG May 24, 2007 Melanie Swan, Futurist MS Futures Group 415-505-4426 melanie@melanieswan.com http://www.melanieswan.com

Bio – Melanie Swan

- Educational background:
 - BA French & Economics, Georgetown University
 - MBA Finance & Accounting, Wharton, Univ. of Pennsylvania
 - Current course work in Physics & Computer Science
- Professional experience
 - Futurist: speaker, researcher, business advisor
 - Hedge Fund Manager: Wall Street, proprietary
- Current projects
 - OpenBasicResearch.org
 - del.icio.us for people
 - Issues in running Historical Simulations
- Interests: science fiction, travel



Summary: Seven principles suggest future advances in computational methodologies

- 1. Approaches to computation approaches of parallelism
- 2. Architecture modularity, simplicity and ubiquity of structure
- 3. **Goals** broadly defined objectives to drive higher value results
- 4. Modulation mechanisms information modulation
- 5. Prediction mechanisms probabilistic models
- 6. Unconscious processing unobtrusiveness computing
- 7. Multidisciplinarity adjacent discipline integration

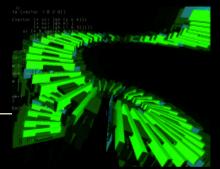
1. Approaches to computation

- Traditional: Von Neumann
 - Linear
- Current and future: non-Von Neumann
 - Cellular, tissue, systemic, holistic focus
 - Parallelism and multicores in hardware and software
 - DNA computing
 - Quantum computing
 - Genetic computing
 - Evo-devo: blend of bottom up emergence / top down design
- <u>Suggests biological and other approaches facilitating</u> parallelism are required for molecular scale computing

2. Architecture

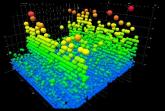
- Conservation
 - Across simple and complex organisms
 - Across processes within one organism
 - Across time, evolution
- Structure
 - Same loose administrative over-structures, diverse applications
- Redundancy in architecture and process
- Massively distributed individual agents
- <u>Suggests modularity, simplicity and ubiquity of underlying structure</u>

3. Goals


AR		
~D		
\sim	eer	

	Systemic, holistic		Traditional, singular
•	Clusters of functionality, capability, redundancy		One precise goal or outcome
•	Loose process, many outcomes		Tightly directed process coupled to outcome
	Service paradigm	•	Task paradigm
	Focus on obtaining useful information		Exclusive focus on THE solution

 <u>Suggests more broadly defined objectives drive higher</u> <u>value results</u>

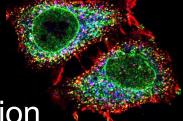

4. Modulation mechanisms

- Short and long-term memory:
 - An implemented evaluation of the importance of information
- Brain automatically modulates importance
- Computing can better modulate information with attributes signaling relevance, value, accuracy, etc.
 - Repetition, time-based algorithms
 - Web 2.0 marks relevance and importance
 - Scientific Research 2.0 digg for PubMed, RSS peer feeds, collaborative research paper commenting and annotation
- <u>Suggests much higher levels of information modulation</u> with relevance attributes

5. Prediction mechanisms

- Prediction is a strong biological mechanism
- Explosion in predictive, probabilistic, statistical, Bayesian papers and applications
 - Numenta
 - Google
- Key parameters of successful probabilistic model implementation
 - Large data corpus
 - Abstraction processes

 <u>Suggests greater development and application of</u> probabilistic models

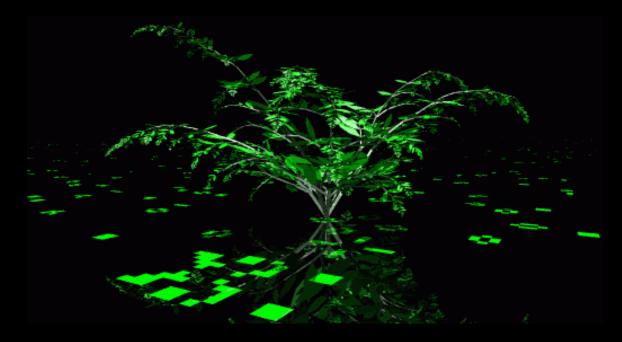


6. Unconscious processing

- Brain processes mainly unconsciously
- Some computer processing is "unconscious"
 - AI, virus scans, ajax websites
- Other computer processing is very obvious
 - Memory, processing, storage
 - Heat, power, battery
 - Connectivity
- Processing will become less conscious
 - Wearables, pen computing, visualization, simulation
 - Ubiquitous embedded chips, sensors, connectivity

Suggests a focus on less obtrusiveness computing

7. Multidisciplinarity



- Cross-field collaboration and new area definition
 - Molecular cognition, molecular science of behavior
- Systems biology
 - Quantitative measurement and mathematical analysis
 - Systems level studies: focus on quantitative aspects and interactions among elements
 - Need to standardize: an eigenvalue by any other name
- Multidisciplinary cataloging of all biological information
 - E.O. Wilson Encyclopedia of Life
- <u>Suggests greater integration of adjacent disciplines in</u> pursuit of open research questions

Summary: Seven principles suggest future advances in computational methodologies

- 1. Approaches to computation approaches of parallelism
- 2. Architecture modularity, simplicity and ubiquity of structure
- 3. **Goals** broadly defined objectives to drive higher value results
- 4. Modulation mechanisms information modulation
- 5. Prediction mechanisms probabilistic models
- 6. Unconscious processing unobtrusiveness computing
- 7. Multidisciplinarity
 - adjacent discipline integration

Thank you

Melanie Swan, Futurist MS Futures Group 415-505-4426 melanie@melanieswan.com http://www.melanieswan.com Licensing: Creative Commons 3.0

NIH BCIG May 24, 2007