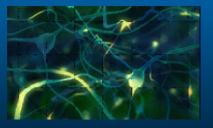


On Intelligence – Jeff Hawkins


Chapter 8: The Future of Intelligence

NIH BCIG April 27, 2006 Presented by: Melanie Swan, Futurist MS Futures Group 650-681-9482 <u>m@melanieswan.com</u> http://www.melanieswan.com

Building Intelligent Machines (IMs)

Introduction

- What will IMs be like?
- Technological challenges and timing
- Moral/ethical issues
- Potential applications for IMs
 - Near-term
 - Longer-term
- Conclusion

NIH BCIG April 27, 2006

IMs can be built – but may not be like what we think

- Appearance and interaction not human-like
- Limited-application robots (smart cars, autonomous mini-submarines, self-guided vacuums/mowers) before androids/robots
 - 1. Necessity: IMs only require cortex equivalent
 - 2. Cost: Excessive cost/effort for humanoid robots
- Multiplicity of IM physical embodiments: cars, planes, computer room racks
 - Distributed sensors and memory system

How to create an IM

- IM: Sensory input that is connected to a hierarchical memory system that models the world and predicts the future
- Recipe for building IMs
 - Set of senses to extract patterns from the world
 - Attach a cortex-like hierarchical memory system
 - Training period builds a model of its world through its senses
 - Result: With its own model of the world, the IM can analogize to past experiences and make predictions

Largest IM technical challenges: memory capacity and connectivity

- Capacity
 - Cortex's 32 trillion synapses \sim = 80 hard-drives
- Cereballum Brain Stem

- An entire cortex is not required
- IM memory chip error tolerance benefit vs. traditional silicon
- Connectivity
 - Speed and sharing substitutes for complexity
 - A cortex cell might connect to 5,000 or 10,000 other cells
 - Electrical pulses are 1 million times faster than neurons
 - Cortex dedicated axons can be IM shared connections
 - Many approaches to this brain chip connectivity problem underway
- When? 10-50 years / "within my lifetime"

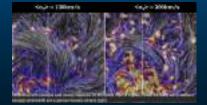
Should we create IMs?

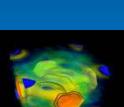
- Dark imaginings vs. potential benefits of new technology
- Unlikely for IMs to threaten large portions of the population (Matrix, Terminator)
 - IMs will be defined-capacity human-controlled tools
 - Being intelligent is being intelligent, not being human
 - IMs (based on the neocortical algorithm) will not have emotions
 - Best application: where human intellect has difficulty, tedium
- Concludes
 - IM ethics, easy compared to genetics and nuclear energy
 - IMs are not self-replicating machines
 - No contemplated way for humans to copy minds into machines

Why should we build IMs? What will IMs do in the near-term?

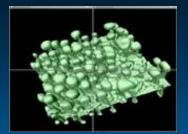
- Imagine near-term uses for brainlike memory systems
 - Auditory applications: speech recognition
 - Multi-year training period
 - Visual applications: security camera (crowbar vs. gift)
 - Transportation applications: truly smart car

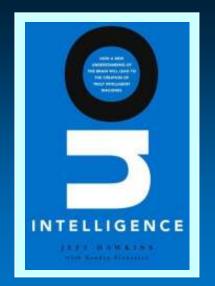
Why should we build IMs? What will IMs do in the longer-term?


- Speed: IMs can do in 10 seconds what a human can do in a month
- Capacity: many times human capacity; no biological constraint
- Replicability: easy to copy, reprogram vs. human brains
- Sensory systems: any natural sense plus new senses
- Pattern-recognition: any input with non-random with a richness or statistical structure



Why should we build IMs? Specific applications


- Application: any mismatch between human senses and the physical phenomena we want to understand
 - Protein folding
 - Mathematics and physics
- Distributed, globe-spanning sensory systems
 - Weather, animal migration, demographics, energy use
- Understanding and predicting human motivations and behavior
- Minute entity sampling
- Pattern representation in cells or large molecules
- Meta-IM: Collecting several IMs into one whole


Conclusion, IMs...


- Think and learn a million times faster than humans
- Remember vast quantities of detailed information
- See incredibly abstract patterns
- Have (distributed) senses more sensitive than our own
- Think in three, four or more dimensions
- Are not limited Turing Test concepts but amazing tools that could dramatically expand our knowledge of the universe

Thank you!

NIH BCIG April 27, 2006 Presented by: Melanie Swan, Futurist MS Futures Group 650-681-9482 <u>m@melanieswan.com</u> http://www.melanieswan.com

Licensing: Creative Commons 3.0