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Abstract 
Health Agents are introduced as personalized AI health advi-
sors for “healthcare by app” instead of “sickcare by appoint-
ment,” especially to target Healthy Longevity as a global 
wellness priority with two billion people estimated to be over 
65 in 2050. Health Agents could allow physicians to oversee 
thousands of patients simultaneously, addressing the 50% of 
the world’s population still not covered by essential health 
services. As AI Health Interfaces shift to continuous health 
monitoring (1000x/minute) with medical-grade smart-
watches, pins, and wearables, individuals can customize the 
level of information viewed. As any genAI agent system, 
Health Agents “speak” natural language to humans and for-
mal language (as Math Agents) to the computational infra-
structure, possibly outputting the mathematics of personal-
ized homeostatic health as part of their reinforcement learn-
ing agent behavior. Health Agents could deliver precision 
medicine as a service. Longevity may be achieved 80% with 
sleep, diet, exercise, and stress reduction, and 20% by medi-
cal intervention (metformin, rapamycin, NAD+/sirtuins, al-
pha-ketoglutarate, taurine), measured quantitatively with ag-
ing clocks, biomarkers, and hallmarks. Health Agents are a 
web3 genAI tool for automated health management, via Per-
sonalized Aging Clocks, digital-biological twins, and path-
way2vec approaches, for human-AI intelligence amplifica-
tion towards healthy longevity for global well-being. 

 The AI Longevity Mindset    

The AI Mindset 
The AI Stack. The AI infrastructure is evolving rapidly, par-
ticularly with genAI (generative AI which creates new data 
based on what it has learned from a training dataset). Activ-
ity can be ordered in the four tiers of human-interface AI 
assistants, reinforcement learning (RL) agents (self-driving, 
robotics), knowledge graphs, and artificial neural network 
architectures (ANNs). AI assistants and RL agents (embod-
ied through prompting) are an intelligence amplification 
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tool for human-AI collaborative access to the vast range of 
knowledge and computational resources now available. 
 ANNs. The first neural network architecture to deliver 
genAI at scale is transformers (GPTs, generative pretrained 
transformer neural networks), Large Language Models 
(LLMs) which use attention as the mechanism to process all 
connections in a dataset simultaneously to perform next 
word (any token) prediction (OpenAI 2023). LLMs treat a 
data corpus as a language, with syntax, semantics, and gram-
mar, whether natural language, mathematics, computer 
code, or proteins. These kinds of Foundation Models are 
trained on broad internet-scale data for application to a wide 
range of use cases. Transformers are so-called because they 
“transform” vector-based data representations during the 
learning phase (using linear algebra methods).  
 Transformer architectures are being extended with state-
of-the-art LLMs released for multimodal VLMs (vision-lan-
guage models) (Gemini 2023), larger context windows (e.g. 
genome-scale training, 1 million base pair size context win-
dow (HyenaDNA, Nguyen et al. 2023)), and longer sequen-
tial data processing with various convolutional and other 
methods such as SSMs (structured state space models 
(Mamba, Gu and Dao, 2023)) and model grafting (hybrid 
network architectures evolving during training, 
StripedHyena-7b (7 billion parameters (learned weights be-
tween data elements), Poli et al. 2023).  
 GPTs to GNNs: 2D to 3D+. An advance in digital biology 
is GNNs (graph neural networks, technically a form of trans-
former) to process 3D data such as molecules (Bronstein et 
al. 2021) with attention or message-passing. The early suc-
cess of GPTs is credited to the “traditional” machine learn-
ing recipe (Halevy et al. 2009) of a small set of algorithms 
operating on a very large dataset, with substantial computa-
tional power. GNNs require a more extensive implementa-
tion of physics to treat 3D environments. The transfor-
mations of data representations in GNNs are more closely 

 



tied to the three main symmetry transformations in physics: 
translation (displacement), rotation, and reflection, and the 
notions of invariance (output unchanged per transformation) 
and equivariance (output changes consistently with transfor-
mation). For example, AlphaFold2’s Invariant Point Atten-
tion models the displacement and rotation of amino acids as 
triangles in space to identify pairwise combinations based 
on angle and torsional force (Jumper et al. 2021). Also used 
in GNNs is beyond-Euclidean hyperbolic space to effi-
ciently represent large datasets, for example hierarchical 
tree-structured data (Zhou et al. 2022).  
 Knowledge Graph Embedding. Knowledge Graph vector 
Embedding (KGE) methods also employ a full range of hy-
perbolic space and symmetry transformations, with found-
ing algorithms TransE (translation embedding) (Bordes et 
al. 2013), RotatE (rotation embedding) (Sun et al. 2019), and 
ReflectE (reflection embedding) (Zhang et al. 2022). More 
capacious number systems expand from the everyday real 
numbers (1D numbers) to 2D complex numbers with Com-
plEx (Trouillon et al. 2016) and 4D quaternion numbers 
with QuatE (Zhang et al. 2019). Quantum formulations are 
in development, e.g. quantum embedding (Li et al. 2023a) 
and baqprop (quantum backpropagation of errors) (Verdon 
et al. 2019). Temporal KGEs are a discovery domain with 
temporal symmetry, antisymmetry, and inversion deployed 
via Lorentz transformation (LorenTzE, Li et al. 2023b), ten-
sor factorization (TSimplE, He et al. 2023), and eGNN neu-
ral operator temporal dynamics (Xu et al. 2024). Finally, 
KGE efforts are abstracted to mathematical formalism with 
geometric algebras (GeomE, Xu et al. 2020), group-theo-
retic semigroups (SemE, Yang et al. 2022), and Riemannian 
optimization (OrthogonalE, Zhu and Shimodaira, 2024).  
 The Formalization Turn. ANNs and KGE methods high-
light the implementation of mathematical physics in the AI 
infrastructure, notably quantum-classical-relativistic mod-
els, real-complex-quaternionic (1D-2D-4D) numbers, and 
beyond-Euclidean space (spherical, hyperbolic) and time 
(Lorentz invariance, imaginary (complex-valued) time, and 
time reversal symmetry). A second aspect of the “formali-
zation turn” continues the project of integrating disciplinary 
fields by finding mathematical structure underlying them 
(Wigner 1960). For example, combinatoric and geometric 
structure in particle scattering amplitudes (Arkani-Hamed et 
al. 2024), a category-theoretic account of double-entry 
bookkeeping (Katis et al. 2008), and the formal axioms of 
blockchains (Goncharov and Nechesov 2023).  
 Category theory is a meta-mathematics for investigating 
the relationships between different types of mathematical 
objects (e.g. sets, groups, vector spaces) using categories 
and functions between them, composing their relations. Cat-
egory-theoretic methods are seen in deep learning (Gav-
ranovic et al. 2024), information theory (Katsumata et al. 
2023), and genomics (Wu 2023), and generally proposed for 
treating the complexity of biosystems (Rosen 1991). 

 Math Agents. Math Agents are an “AI math layer” for 
various mathematical and computational tasks (Swan et al. 
2023). Math is the data corpus processed with vector em-
bedding and visualized in equation clusters to view the 
mathscape (set of equations) of a paper or sector at once. 
The implication of embedding as a standard genAI method 
is treating “big data” (entire data corpora) at the level of em-
bedding (a mathematical formulation) to deliver a clean ab-
stract view of very-large datasets. Embedding spaces allow 
not only data viewing but novel discovery. For example, a 
Universal Cell Embedding foundation model (representing 
every cell state and type) was used to identify new develop-
mental lineages (Rosen et al. 2023), and a UMAP (compres-
sion) visualization of zero-shot embedding was used to find 
novel mouse kidney cell types (Kragsteen et al. 2023). 
GenAI means content generation, and math agent systems 
may be prompted to write the mathematics of the underlying 
knowledge graphs “for free” as part of their output. Not only 
is the content-level prediction obtained (e.g. folded protein 
structure), but also its mathematical description. AI is a 
method for interacting with reality at the level of math (a 
composite view of “big data” and “big math”). 
 Health Agents. Health Agents are envisioned as person-
alized AI health advisors for “healthcare by app” instead of 
“sickcare by appointment.” Health Agents have two audi-
ences: human and AI in generating the content-level predic-
tions of personalized health and longevity interventions, to-
gether with the formal-level of mathematics describing ho-
meostatic health. Health agent systems could operate by 
wearable apps from underlying blockchain-based healthcare 
digital-biological twin platforms allowing physicians to 
oversee thousands of patients simultaneously. 
 Digital Biology. Digital Biology is the extension of com-
putational biology informatics with genAI methods. Given 
the complexity of biology, mathematics as a discovery tool 
has been infeasible. It has not yet been possible to write the 
robust mathematics of biology as formalizations explaining 
pathology and homeostasis. However, Health Agents could 
bring “mathematics as a method” to biological theorizing. 
 Agile Mindset. The AI mindset suggests a constant first-
principles stance in the era of Digital Biology. The molecu-
lar biology dogma of the DNA-RNA-protein synthesis chain 
is being reversed from top-down to also include bottom-up 
protein structure to DNA (e.g. in AlphaMissense (Cheng et 
al. 2023)). Drug design is replacing drug discovery in the 
idea of simply designing molecules with needed properties 
instead of performing trial-and-error drug searches (Stokes 
et al. 2020). Treating the pathway not the condition is a new 
ethos in systems biology (Gschwind et al. 2023).  

The Longevity Mindset 
Another mindset shift is considering aging as a treatable dis-
ease instead of as a natural and inevitable condition of life. 



The World Health Organization updated its International 
Classification of Diseases (ICD-11) in 2022 for a diagnostic 
category of “ageing associated decline in intrinsic capacity” 
(Rabheru et al. 2022). Reducing suffering through longevity 
therapies could be a worldwide priority given the “senior 
tsunami” of 20% of the world’s population estimated to be 
60 or older in 2050 (United Nations 2017). Longevity is de-
fined as a healthy lifespan of vitality, energy, and wellness, 
contra aging as an exponential decline in capabilities leading 
to age-related diseases and death. The aim is population-
scale interventions to slow, reverse, and prevent aging.  
 Longevity Clocks. One tool for measuring age and inter-
ventional impact is aging clocks which compare biological 
age to chronological age. Such Personalized Aging Clocks 
include a variety of epigenetic, transcriptomic, glycan, 
metabolomic, and telomere length clocks at the organism 
and organ level (Polidori 2024). Blood tests are used meas-
ure these factors, for example, the plasma protein signature 
for eleven organ-specific aging clocks (brain, muscle, ar-
tery, heart, lung, immune, liver, kidney, pancreas, adipose, 
intestine) to find 20% of 5,676 healthy adults already having 
accelerated aging in at least one organ (Oh et al. 2023). Ep-
igenetic clocks confirmed the rejuvenation of six tissues get-
ting younger as measured by DNA methylation values (in 
an animal parabiosis model) (Horvath et al. 2024).  
 Aging clocks may be used in concert with biomarkers of 
aging (Moqri et al. 2023) and ageotypes (phenotypic age-
typing by metabolic, immune, liver, and kidney health) 
(Ahadi et al. 2020) in targeted longevity interventions. The 
aim is turning the biological clock back in 10-year periods 
(e.g. a 70–80-year-old having the muscle health of a 60–70-
year-old), and then possibly maintaining people at a desired 
biological age which may be 20-40 (Bischof et al. 2023).   
 Longevity Interventions. The experimental evidence for 
longevity interventions continues to grow (Orr et al. 2024, 
Blagosklonny 2023, Barzilai et al. 2016, Matysek et al. 
2023, Soh et al. 2023, Fahy et al. 2019). Suggested geropro-
tective medications and supplements include rapamycin, 
metformin, senolytics, acarbose, spermidine, NR/NAD+ en-
hancers, NSAIDs, lithium, glucosamine, glycine, and alpha-
ketoglutarate (Guarente et al. 2024, Gyanwali et al. 2022, 
Partridge et al. 2020). The two leading interventions with 
demonstrable results are rapamycin and metformin, in com-
bination activating AMPK and decreasing mTORC1 signal-
ing which may optimize the allocation of energy resources 
towards the maintenance of proteostasis (protein homeosta-
sis) (Wolff et al. 2020).  
 Semaglutide Boom. Adding to aging clocks and aging bi-
omarkers as actionable approaches to longevity is the sur-
prise that 3% of Americans may already be taking an anti-
aging drug without knowing it. Named Science’s 2023 
breakthrough of the year, semaglutide weight loss drugs 
(GLP-1 agonists such as Wegovy, Ozempic) may also have 
cardiac benefits and an anti-inflammatory role in the brain-

gut axis (Wong et al. 2023). Semaglutide is a medication 
which mimics the GLP-1 (glucagon-like peptide-1) hor-
mone released in the gut to help the body feel full, producing 
insulin and reducing blood sugar (glucose). The digital 
health divide is a pressing concern as on the one hand, Wall 
Street analysts estimate that worldwide spending on semag-
lutide, mostly not covered by insurance, could reach $100 
billion by 2035 (Adegbesan 2023). On the other hand, the 
World Health Organization notes that more than half of the 
global population is still not covered by essential health ser-
vices (Taylor 2023). Implementing longevity protocols to 
extend healthy lifespan could become an ethical imperative 
and a matter of equity, access, and business model.  
 Longevity – There’s an app for that~! The longevity rev-
olution could be by app – implemented with Health Agent 
wearables, sensors, patches, apps, and 3D printers, moni-
tored by longevity physicians, with digital twin partners 
(virtual patient simulations). Wearables capturing tempera-
ture, sleep quality, and heart rate variability provide address-
able early-warning signs for various pathologies (Alavi et 
al. 2022), for example sleep quality predicting type 2 diabe-
tes onset by ten years (Komine et al. 2016). Technology-
savvy populations suggest an uberized (widespread accessi-
ble via mobile technology) approach to healthcare and lon-
gevity therapy delivery, as Deloitte confirms 90% world-
wide mobile phone penetration in 2017 (smartphones 80%; 
81% in emerging markets) (Wigginton et al. 2017).  
 Forward-looking countries are targeting longevity as a 
government policy initiative with goals for healthy citizenry 
with +5-year healthspans in Singapore (the sixth “Blue 
Zone” country) and Arab states (Kalin 2023). Health is 
emerging as a competitive currency and basic human right 
for human potentiality (Nussbaum 2003). The XPRIZE 
Longevity Prize was announced in November 2023 for a 
therapeutic intervention to restore muscle, cognitive, and 
immune function 10-20 years in 65–80-year-old populations 
within one year. Longevity venture capital, although down 
from 2021 peaks, reported 101 deals and USD $1.1 billion 
for the first three quarters of 2023, sector tracker Longev-
ity.Technology reported (Newman and Belleza 2023) and 
eleven dedicated Longevity venture funds were profiled by 
Forbes (Predin 2023). “AI for social good” has important 
uses in improving health outcomes (Tomasav et al. 2020).  

Generative AI and Biology 

Natural language is the first area of demonstrable genAI pro-
gress, however, biology may be orders of magnitude more 
complex including because the “ruleset” is unknown. 
Whereas one of the largest open-source foundation models, 
LLaMA, has 65 billion parameters (learnable weights be-
tween entities) (MetaAI 2023), state-of-the-art protein mod-
els have 100 billion parameters (Chen et al. 2023), and 



genome language models may require even more. Biologi-
cal computational complexity classes (protein, genome, 
pathway) could be formalized from earlier graph visualiza-
tion starting points (Cirillo et al. 2018, Kugler et al. 2010). 
 Protein Language Models. Life science AI foundation 
models include BioMap’s xTrimoPGLM (cross-modal in-
teractome and multiomics transformer) with 100 billion pa-
rameters as mentioned (Chen et al. 2023) and MetaAI’s 
ESM-2(15B) (evolutionary stochastic model) with 15 bil-
lion parameters (Lin et al. 2022). They represent the protein 
language internally as opposed to beginning with evolution-
ary MSA (multiple sequence alignment) reads as in Al-
phaFold2 and RoseTTAFold. Digital biology platforms 
such as NVDIA’s BioNeMo (biological neural modeling) 
offer pretrained drug discovery models as a cloud service.  
 Genome Language Models. AI foundation models are be-
ing developed in genomics for sequencing and analysis. In 
sequencing, DeepVariant is a Stanford-led transformer pro-
ject that holds the Guiness Book of World Records for the 
fastest human genome sequenced (5 hours 2 min, on 16 Mar 
2021, still unbeaten as of February 2024). The DeepConsen-
sus project uses a gap-aware sequence transformer to reduce 
read errors by 42% as compared with hidden Markov mod-
els as the traditional sequence-reading method (Baid et al. 
2023). DNAGPT is a transformer performing sequence clas-
sification through numerical regression and a comprehen-
sive token language (Zhang et al. 2023). 
 In genomic analysis, there are various projects focused on 
building genome-scale language models such as Hye-
naDNA, training on whole-genome datasets to model indi-
vidual mutations (Nguyen et al. 2023). The idea is to be able 
to prompt ChatGPT with an entire human genome to iden-
tify mutational profile risks and interventions (e.g. which 
aging clocks to start with in precision health programs). 
Other projects include DNABERT for making predictions 
about transcription factor binding sites, scBERT trained on 
scRNA-Seq (single cell RNA sequencing) data to predict 
gene-gene interactions, and Enformer for making predic-
tions about long-range interactions in the genome. AlphaM-
issense uses protein structures to predict pathogenic mis-
sense mutations (of 71 million human mutations, 32% are 
pathogenic) (Cheng et al. 2023). Missense mutations are 
~58% of mutations; then nonsense (10%), frameshift (8%), 
splice (6%), insertion-deletion (5%), and other (13%). 

Digital Twins and Biology 

A digital twin is a virtual representation of a physical object, 
person, or process, estimated by McKinsey to be a $48.2 bil-
lion industry in 2026 (Borden 2023). Digital twins are used 
to model manufacturing operations and infrastructure. Sin-
gapore completed the first digital twin of an entire country 
(Virtual Singapore) in 2022. In healthcare, virtual patient 

models are used for procedure simulation, medical educa-
tion, clinical research, and drug development. Clinical trial 
simulations of millions of genAI-created virtual patients 
might be routine in the future.  
 On the one hand, a long-term vision supports the idea of 
there being biomedical digital twins for the world’s 8.1 bil-
lion humans. Each person could have an ID number, a MAC 
address (phone), and a secure web3 digital twin (Akash and 
Ferdous 2022). On the other hand, healthcare digital twins 
are not an immediate possibility given the complexity of bi-
ological systems, the need for large-scale, high-quality data, 
and the potential for model inaccuracies.   
 Longevity Twins. Homeostatic health could be Turing-
complete (a format running on any platform, biological or 
machine; digital twin or biological counterpart). Digital 
twins started for longevity medicine could extend to future 
BCI (brain-computer interface) and connectome projects. 

Web3  

Web3 refers to the current third phase of the internet’s de-
velopment in expanding the interaction mode from the pas-
sive read-only web (1990s) to the interactive read-write web 
(2000s) to the secure and remunerative read-write-own web 
(2020s enabled by web3 blockchain technologies). Digital 
transformation continues as many industries become in-
creasingly digitally instantiated. First was the “ready” con-
version of content (1990s dot-com news, media, and enter-
tainment), then followed by the more complicated imple-
mentation of money and economics, digital art and intellec-
tual property (IP), supply chain, manufacturing, transporta-
tion, and science. These latter require more complex fea-
tures such as non-fungibility and contracts, capabilities pro-
vided by blockchains. Blockchains are secure distributed 
ledger systems providing a database for resource allocation 
and an immutable record of event histories. Blockchain eco-
systems are a foundational information technology using se-
cure properties for digital exchange and economics more 
broadly as a design principle to produce non-economic out-
comes with a broader society benefit (Swan 2015). 

Blockchains in Biology  
Blockchains are used in health and biology for secure data 
transfer, supply chain logistics, chain-of-custody tracing, 
and clinical trials. MediLedger is a global pharmaceutical 
supply chain blockchain (led by Pfizer, Amgen, and Gilead) 
completing a pilot program with the U.S. FDA in 2023 to-
wards the 2023 Drug Supply Chain Security Act. Triall is a 
clinical trials blockchain platform conducting a two-year 
multi-center pulmonary arterial hypertension clinical trial 
with the Mayo Clinic. BloodChain is a blood donation net-
work managed with blockchains.  



 Genome Blockchains. The scale of contemporary science 
(million-patient studies involving 30 GB whole-human ge-
nome files from sixteen sites (Bellenguez et al. 2022)) im-
plies new models for its conduct. For example, the direct-to-
consumer whole-human genome sequencing company Neb-
ula Genomics mints a new user-controlled NFT for each se-
quenced genome (with genomes.io).  
 DeSci and Longevity DAOs. Web3 methods facilitate 
DeSci (decentralized science) for carrying out internet-scale 
bioinformatics. Example projects include LabDAO (an open 
science collaboration community) and VitaDAO (specific to 
longevity research). (A DAO is a distributed autonomous 
organization, an entity formed with blockchain-based smart 
contracts, with some level of automated administration.) 

Blockchain Healthcare Digital Twins  
The healthcare delivery system of the future could be one 
orchestrated by health agents and healthcare digital twins, as 
physicians oversee the smart health ecosystem by app. 
Blockchains are suggested as a platform for healthcare dig-
ital twins for several reasons. First is the usual notion of 
blockchains for secure multi-party access to a single un-
changeable event history. Second is proof attestation to 
track the efficacy of interventions (insurance companies are 
already considering using aging clocks in actuarial tables). 
Third is an interoperable overlay for integrating multiple 
omics data streams and EHRs. Fourth is blockchain design 
principles for modeling non-economic aspects such as ho-
meostasis as its own “bioeconomy.” Fifth is the ability to 
add genAI technologies to the secure health stack with 
Health Agents as the “user” of the blockchain healthcare 
digital twin; blockchains both track and facilitate the de-
ployment of AI agents. Health Agents could help the digital 
twin learn its own longevity protocol.  
 Blockchain Healthcare Digital Twins for Longevity. The 
complexity of pathways and processes in the human body 
can be modeled in the blockchain healthcare digital twin as 
a multiscalar homeostatic economy of wellness and disease. 
A blockchain system can instantiate the body, labeling enti-
ties as wallet addresses, giving them relevant biocurrency 
balances, and modeling their activity with smart contract 
transactions. The schema allows any level of drill-down and 
roll-up for views of the system per the hashing structure (e.g. 
organ, tissue, cellular level). One top-level Merkle root can 
call the entirety of the body. One lowest-level transaction 
could record the amount of insulin-facilitated glucose re-
lease into a cell. The complex pathways of the systems biol-
ogy of aging (Furber 2019) and their related interventions 
could be modeled with a blockchain smart contract system. 
As Virtual Singapore’s first digital twin of a country, the 
first full digital twin of the human can be imagined. The 
eleven-organ aging clocks could have avatorial representa-
tion sitting around “the conference table of the body” as the 

user interface, genAI stating their agenda based on real-life 
biomarker levels (analogous to other non-human entities AI-
voiced through sensor output). 
 Longevity State Machine. A smart contract system is im-
plicated to automate blockchain healthcare digital twins. 
This could be via the Polkadot blockchain ecosystem. Vari-
ous chains federate for interoperability in the overall struc-
ture of “block space as a service” (secure computation and 
event-recording). Proof-of-stake (randomized participant-
based) mining systems provide a greener alternative to 
costly Bitcoin proof-of-work mining.  
 Smart contract state machines update wallet balances per 
transactions. Wallets may contain any cargo such as crypto-
currencies, NFTs (digital assets), computer memory, iden-
tity documents (digital passport), or biocurrencies used by 
Health Agents to manage longevity programs in healthcare 
digital twins. Independent observers (oracles) take readings 
(e.g. from wearables, blood tests, patches, toilets, and apps), 
sending attested measurements to the smart contract system. 
 Biocurrency Transactions. In a biosystem, there are many 
different “biocurrencies” circulating to conduct homeostatic 
activities. The longevity twin has wallet addresses for hun-
dreds of blood biomarkers (e.g. glucose, insulin, homocys-
teine, HS-CRP, Hb1ac, lymphocytes); everything seen on a 
blood test. For example, a homocysteine wallet might have 
an initial balance of 9.0, which is too high, as the desired 
level of the biomarker may be 5.0. The target protocol is 
written as a smart contract with logic about the course of 
action, for example, reducing homocysteine with folate. 
Each intervention, supplement, or prescription drug could 
have a wallet address and balance that is managed with 
smart contracts. Given the homocysteine wallet balance of 
9.0, the instruction is for a daily regimen of 500 mg of folate. 
The folate wallet is activated with a transaction to dispense 
500 mg into the smart smoothie, decrementing the overall 
monthly balance of 50,000 to 49,500. Wallet entities may 
have their own biocurrencies (e.g. homocysteine, folate), all 
convertible to BioCoin or some other universal currency.   
 Biowallets and Longevity Payment Channels. Health 
Agent smart contracts could manage longevity interventions 
in off-chain payment channels (contractual interaction se-
quences) for daily interactions settled to the main health 
chain on a weekly or monthly basis. Smart contracts would 
obtain measures of pathway biocurrencies from connected 
sensors (oracles) and distribute intervention-currencies as a 
result. The payment channel orchestrates the folate balance 
acting on the homocysteine pathway to reduce the homocys-
teine balance. HomocysteineCoin and FolateCoin are read-
ily convertible to meta-tokens LongevityCoin and BioCoin.  
 Bioconsensus. Health Agents can finetune the different 
biocurrencies with payment channel smart contracts to learn 
the optimal personalized longevity protocol. Ideally the sys-
tem can self-learn its homeostasis. Smart contract coordi-
nated biowallets could be rewarded by Health Agent 



reinforcement learning mechanisms to reach their own bio-
consensus as to the truth state constituting optimal longev-
ity. The biowallet is a useful binary mechanism to target 
positive and negative behavior, for example reversing dis-
ease as “bad player behavior” by assigning negative wallet 
balances to missense mutations and transposon activations 
that are targeted by the “good actor behavior” of epigenetic 
methylation to earn token and pay down negative wallet bal-
ances. Health Agent blockchain longevity twins could be 
tested with Lightning Network payment channels. 
 Aging Clocks Registered at Birth. As biological processes 
peak and decline at various stages, some even before birth, 
a full life-cycle longevity program could be used to register 
aging clocks as wallets at birth. As life proceeds, balances 
can be updated to compare biological and chronological age 
and apply interventions. Blockchain healthcare digital twins 
are further implicated to manage the potential future suite of 
wearables, patches, and on-board electronics of brain-com-
puter interfaces, connectome maps, and medical nanorobots. 
Security is crucial as 5 million people have implanted pace-
makers, some internet-connected for real-time remote mon-
itoring, automated pacing therapies, and software updates. 

Health Agents 

Health Agents are the concept of an AI system tasked with 
precision human health and longevity. Such a personalized 
health system app-tool entails dialogue and data capture at 
the human-AI interface level and agent-based activity at the 
AI infrastructure level to access information, model health, 
and orchestrate intervention. Health Agents are qualitative 
and quantitative, interacting at both the human-consumable 
content-level of personalized health and longevity interven-
tion, and the AI-usable formal-level of mathematics describ-
ing homeostatic health (possibly involving category theory 
and other formalisms). A digital twin system is implicated 
as a virtual model of individual health, secured by block-
chain smart contracts, user-permissioned for agents to learn 
by sharing federated data (as in vehicular blockchains of 
self-driving networks) and for health care plan or societal 
level aggregation. For precision longevity, the aim is to have 
a formal statement of health (homeostasis) which can be 
learned by AI Health Agent systems. The results could be 
connected to aging clock, biometrics, and tracking data for 
longevity physicians to review in the Longevity App.  

Pathway2vec 

Aging clocks research has identified pathways not tradition-
ally targeted by longevity interventions (Oh et al. 2023), 
hence the first project for Health Agents is implementing 
Personalized Aging Clocks in a pathway2vec program. 
Pathway2vec is representing biological pathways as vectors 

for input to ANNs, in a precedence of approaches beginning 
with word2vec (Mikolov et al. 2013), and including 
math2vec (vector representations of equations), gene2vec, 
SNP2vec, mut2vec, and disease2vec. Related “cancer2vec” 
approaches use cluster embedding to identify individual 
cancer risk (Choy et al. 2019) and patient-specific molecular 
patterns of cancer (Pfeifer et al. 2022), which could likewise 
model personalized aging-clock targets in longevity. A path-
way2vec project defines a vector representation of drug 
pairs and pathway genes (Yamagiwa et al. 2023).  

Longevity Protocol Testing 

The next steps in the realization of precision longevity med-
icine could be testing and tailoring proposed protocols for 
personalized intervention (e.g. Partridge et al. 2020 p. 516, 
Houston 2018 pp. 86-87, and Sinclair 2019 p. 304). This en-
tails blood biomarker tests to assess an individual’s ageo-
type profile of accelerated aging using eleven-organ system 
aging clocks (Oh et al. 2023) and other aging clocks (e.g. 
epigenetic) (Horvath et al. 2024).  

Risks and Limitations 

The biggest risk in the AI Health Agents proposal is that alt-
hough technology development is proceeding quickly, the 
implementation of healthy longevity programs may be too 
late to adequately respond to aging demographics. Longev-
ity scholars therefore promote the “escape velocity” idea of 
deploying immediate interventions to buy enough time until 
more complete solutions are available (de Grey 2004). Alt-
hough a contemporary lens sees longevity as a technology, 
it may not be easy to reprogram biology. There are social 
challenges to traditional ideas of health, life, and care, along 
with regulatory hurdles and healthcare system adoption con-
straints. Further, the use of genAI in biology and medicine 
has a new set of risks related to data quality, interpretability, 
and ethics (hallucinations and bias), which requires attention 
before Health Agents are deployed.  

Conclusion 

The build-out of the AI infrastructure is proceeding quickly, 
particularly to facilitate the study of biology. Biocomplexity 
poses a formidable challenge, but AI methods have encour-
aging results in the third wave of digitization. The goal is to 
harness the new tools of digital biology to access a larger 
scope of investigation with synthesis between areas and ac-
tionable steps. This work introduces the concept of Health 
Agents (personal AI health stewards realized with block-
chain digital health twins) as a new idea in human-AI col-
laboration and intelligence amplification. Health Agents 
provide an interface for not only qualitative knowledge 



access, but more importantly “non math speaker” access to 
the growing intensity of formal methods in the computa-
tional infrastructure.  The immediate application of Health 
Agents is healthy longevity, starting to be conceived as a 
technology, readily implementable and optimizable like any 
other. 
 Healthy Longevity and Society. Longevity medicine aims 
to extend the healthy lifespan of humans by preventing and 
treating age-related diseases. There are many potential ben-
efits for society. First is improving the quality of life and 
well-being of older adults and families by reducing the bur-
den of chronic diseases, disability, and dependency (Fried et 
al. 2022). Second is enhancing the productivity and contri-
bution of older adults to the economy and society, by ena-
bling people to work longer, volunteer, mentor, and partici-
pate in civic activities (Accius et al. 2022). Third is reducing 
the healthcare costs associated with aging, by shifting the 
focus from treating diseases to promoting health and pre-
venting disease (OECD 2019). Fourth is creating new op-
portunities for various industries, such as biotechnology, 
pharmaceuticals, education, and entertainment that cater to 
the needs of older adults (Ng and Indran 2024). Longevity 
medicine realized with AI tools such as Health Agents is a 
mindset and health program that could help individuals and 
society to realize a longer, healthier, and happier existence. 
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