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Abstract 
Health Agents are introduced as the concept of a personal-
ized AI health advisor overlay for continuous health moni-
toring (e.g. 1000x/minute) medical-grade smartwatches and 
wearables for “healthcare by app” instead of “sickcare by 
appointment.” Individuals can customize the level of detail 
in the information they view. Health Agents “speak” natural 
language to humans and formal language to the computa-
tional infrastructure, possibly outputting the mathematics of 
personalized homeostatic health as part of their reinforce-
ment learning agent behavior. As an AI health interface, the 
agent facilitates the management of precision medicine as a 
service. Healthy longevity is a high-profile area character-
ized by the increasing acceptance of medical intervention, 
longevity biotech venture capital investment, and global 
priority as 2 billion people will be over 65 in 2050. Aging 
hallmarks, biomarkers, and clocks provide a quantitative 
measure for intervention. Some of the leading interventions 
include metformin, rapamycin, spermidine, NAD+/sirtuins, 
alpha-ketoglutarate, and taurine. AI-driven digital biology, 
longevity medicine, and Web3 personalized healthcare 
come together in the idea of Health Agents. This Web3 
genAI tool for automated health management, specifically 
via digital-biological twins and pathway2vec approaches, 
demonstrates human-AI intelligence amplification and 
works towards healthy longevity for global well-being. 

 The AI Longevity Mindset    

The AI Mindset 
The AI Stack. The AI infrastructure is evolving rapidly, 
particularly with genAI (generative AI which creates new 
data based on what it has learned from a training dataset). 
Activity can be ordered in the four tiers of human-interface 
AI assistants, reinforcement learning (RL) agents (self-
driving, robotics), knowledge graphs, and artificial neural 
network architectures (ANNs). AI assistants and RL agents 
(embodied through prompting) are an intelligence amplifi-
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cation tool for human-AI collaborative access to the other 
tiers of the vast range of knowledge and computational 
power now available. 
 ANNs. The first neural network architecture to deliver 
genAI at scale is transformers (GPTs, generative pretrained 
transformer neural networks), Large Language Models 
(LLMs) which use attention as the mechanism to process 
all connections in a dataset simultaneously to perform next 
word (any token) prediction (OpenAI 2023). LLMs treat a 
data corpus as a language, with syntax, semantics, and 
grammar, whether natural language, mathematics, comput-
er code, or proteins. These kinds of Foundation Models are 
trained on broad internet-scale data for application to a 
wide range of use cases. Transformers are so-called be-
cause they “transform” vector-based data representations 
during the learning phase (using linear algebra methods).  
 Transformer architectures are being extended with state-
of-the-art LLMs released for multimodal VLMs (vision-
language models) (Gemini 2023), larger context windows 
(e.g. genome-scale training, 1 million base pair size con-
text window (HyenaDNA, Nguyen et al. 2023)), and long-
er sequential data processing with various convolutional 
and other methods such as SSMs (structured state space 
models (Mamba, Gu and Dao, 2023)) and model grafting 
(hybrid network architectures evolving during training, 
StripedHyena-7b (7 billion parameters (learned weights be-
tween data elements), Poli et al. 2023).  
 GPTs to GNNs: 2D to 3D+. An advance in digital biolo-
gy is GNNs (graph neural networks, technically a form of 
transformer) to process 3D data such as molecules (Bron-
stein et al. 2021) with attention or message-passing. The 
early success of GPTs is credited to the “traditional” ma-
chine learning recipe (Halevy et al. 2009) of a small set of 
algorithms operating on a very large dataset, with substan-
tial computational power. GNNs require a more extensive 
implementation of physics to treat 3D environments. The 
transformations of data representations in GNNs are more 
closely tied to the three main symmetry transformations in 
physics: translation (displacement), rotation, and reflection, 



and the notions of invariance (output unchanged per trans-
formation) and equivariance (output changes consistently 
with transformation). For example, AlphaFold2’s Invariant 
Point Attention models the displacement and rotation of 
amino acids as triangles in space to identify pairwise com-
binations based on angle and torsional force (Jumper et al. 
2021). Also used in GNNs is beyond-Euclidean hyperbolic 
space to efficiently represent large datasets, for example 
hierarchical tree-structured data in protein-protein interac-
tions (Zhou et al. 2022).  
 Knowledge Graph Embedding. Knowledge Graph vector 
Embedding (KGE) methods also employ a full range of 
hyperbolic space and symmetry transformations, with 
founding algorithms TransE (translation embedding) (Bor-
des et al. 2013), RotatE (rotation embedding) (Sun et al. 
2019), and ReflectE (reflection embedding) (Zhang et al. 
2022). More capacious number systems are also in use, ex-
panding from the everyday real numbers (1D numbers) to 
2D complex numbers with ComplEx (Trouillon et al. 
2016) and 4D quaternion numbers with QuatE (Zhang et 
al. 2019). Quantum formulations are in development, e.g. 
quantum embedding (Li et al. 2023a) and baqprop (quan-
tum backpropagation of errors) (Verdon et al. 2019). Tem-
poral KGEs are a discovery domain with temporal sym-
metry, antisymmetry, and inversion deployed via Lorentz 
transformation (LorenTzE, Li et al. 2023b) and tensor fac-
torization (TSimplE, He et al. 2023). Finally, KGE efforts 
are abstracted to mathematical formalism with geometric 
algebras (GeomE, Xu et al. 2020), group-theoretic semi-
groups (SemE, Yang et al. 2022), and Riemannian optimi-
zation (OrthogonalE, Zhu and Shimodaira, 2024).  
 The Formalization Turn. ANNs and KGE methods high-
light the implementation of mathematical physics in the AI 
infrastructure, notably quantum-classical-relativistic mod-
els, real-complex-quaternionic (1D-2D-4D) numbers, and 
beyond-Euclidean space (spherical, hyperbolic) and time 
(Lorentz invariance, imaginary (complex-valued) time, and 
time reversal symmetry). A second aspect of the “formali-
zation turn” continues the project of integrating discipli-
nary fields by finding mathematical structure underlying 
them (Wigner 1960). For example, combinatoric and geo-
metric structure in particle scattering amplitudes (Arkani-
Hamed et al. 2024), a category-theoretic account of dou-
ble-entry bookkeeping (Katis et al. 2008), and the formal 
axioms of blockchains (Goncharov and Nechesov 2023).  
 Category theory is the “mathematics of mathematics” 
investigating the structure and relationships between dif-
ferent types of mathematical objects (e.g. sets, groups, vec-
tor spaces) using the concept of categories and functions 
between them, composing their relations, now seen in the 
AI infrastructure (de Haan et al. 2020), information theory 
(Katsumata et al. 2023) and genomics (Wu 2023). Since 
category theory can generalize formal connections between 
seemingly diverse domains, it has been hypothesized as an 

appropriate mathematics for treating the systems, states, 
and processes of biology by focusing on dynamic relation-
ships and interactions (Rosen 1991). 
 Math Agents. Math Agents are a type of AI system de-
signed to solve mathematical problems and perform math-
ematical tasks in pure (automated theorem proving) and 
applied (model-fit assessment) mathematics (Swan et al. 
2023). One implication is that math agent systems can 
write the mathematics of the underlying knowledge graphs 
“for free” as part of their output. Not only is the content-
level prediction obtained (e.g. folded protein structure), but 
also its mathematical description. AI is a method for inter-
acting with reality at the level of math (shifting from “big 
data” to “big math”). Math is conducive to AI alignment in 
providing a trustable format that can be easily validated, 
and a compact and efficient generalization. The mathemat-
ical description of a system provides a structure and meth-
od of solving for unknowns such as disease pathology 
resolution in precision health programs. The benefit of 
math agent systems is the possibility of obtaining results at 
both the level of data and math; human-readable data and 
AI-usable math. AI writes the best code (Karpathy 2017) 
and may also generate the best mathematical description. 
 Health Agents. Health Agents are envisioned as a per-
sonal AI system to deliver precision health using all tiers 
and methods of the AI stack, both qualitative and quantita-
tive (e.g. category theory or other relevant formalizations). 
Health Agents have two audiences: human and AI ain gen-
erating the content-level of personalized health and longev-
ity interventions together with the formal-level of mathe-
matics describing homeostatic health. Health agent systems 
could operate by wearable apps from underlying block-
chain-based healthcare digital-biological twin platforms.  
 Digital Biology. DeepMind cofounder Demis Hassabis 
suggests that just as math is the language of physics, AI is 
the language of biology. This could be because the mathe-
matics of biology is complex enough to have been mainly 
beyond human reach. It has not yet been possible to write 
the robust mathematics of biology as formalizations ex-
plaining pathology and homeostasis. Tools such as Health 
Agents systems could offer a way to realize these goals. 
 Agile Mindset. The AI mindset suggests a constant first-
principles thinking stance to stay flexible operating with 
the new AI affordances in the era of science as a third 
phase of digitization (following dot-com news, media, and 
entertainment, and then banking, finance, social media, and 
transportation). The central dogma in molecular biology of 
the DNA-RNA-protein synthesis chain is being reversed 
from top-down to also include bottom-up from protein 
structure back up to DNA e.g. in AlphaMissense (Cheng et 
al. 2023). Drug design is replacing drug discovery in the 
idea of simply designing molecules with needed properties 
instead of performing trial-and-error drug searches (Stokes 



et al. 2020). Treating the pathway not the condition is a 
new ethos in systems biology (Gschwind et al. 2023).  

The Longevity Mindset 
Another mindset shift is considering aging as a treatable 
disease instead of as a natural and inevitable condition of 
life. The World Health Organization updated its Interna-
tional Classification of Diseases (ICD-11) in 2022 for a di-
agnostic category of “ageing associated decline in intrinsic 
capacity” (Rabheru et al. 2022, Bautmans et al. 2022). Re-
ducing suffering through longevity therapies could be a 
worldwide priority given the “senior tsunami” of 20% of 
the world’s population estimated to be 60 or older in 2050 
(United Nations 2017). Longevity is defined as a healthy 
lifespan of vitality, energy, and wellness, contra aging as 
an exponential decline in homeostatic capabilities leading 
to age-related diseases and death. The aim is population-
scale interventions to slow, reverse, and prevent aging.  
 Longevity Clocks. The tool for measuring age and inter-
vention impact is aging clocks which compare biological 
age to chronological age. Aging clocks include epigenetic, 
transcriptomic, glycan, metabolomic, and telomere length 
clocks at the organism and organ level. Blood tests meas-
ure these factors, for example, the plasma protein signature 
for eleven organ-specific aging clocks (brain, muscle, ar-
tery, heart, lung, immune, liver, kidney, pancreas, adipose, 
intestine) to find 20% of 5,676 adults with accelerated ag-
ing in at least one organ (Oh et al. 2023). Epigenetic clocks 
confirmed the rejuvenation of six tissues getting younger 
as measured by DNA methylation values (in an animal 
parabiosis model) (Horvath et al. 2024).  
 Aging clocks may be used in concert with biomarkers of 
aging (Moqri et al. 2023, Science China Life Sciences 
2023) and ageotypes (phenotypic age-typing by metabolic, 
immune, liver, and kidney health) (Ahadi et al. 2020) in 
targeted longevity interventions. The aim is turning the bi-
ological clock back in 10-year periods (e.g. a 70–80-year-
old having the muscle health of a 60–70-year-old), and 
then possibly maintaining all persons at a desired biologi-
cal age which may be 20-40 (Bischof et al. 2023).    
 Longevity Interventions. The experimental evidence for 
longevity interventions continues to grow (Orr et al. 2024, 
Blagosklonny 2023, Barzilai et al. 2016, Matysek et al. 
2023, Soh et al. 2023, Fahy et al. 2019). Suggested gero-
protective medications and supplements include rapamy-
cin, metformin, senolytics, acarbose, spermidine, 
NR/NAD+ enhancers, NSAIDs, lithium, glucosamine, gly-
cine, and alpha-ketoglutarate (Guarente et al. 2024, 
Gyanwali et al. 2022, Partridge et al. 2020). The two lead-
ing interventions with demonstrable results are rapamycin 
and metformin, in combination activating AMPK and de-
creasing mTORC1 signaling which may optimize the allo-

cation of energy resources towards the maintenance of pro-
teostasis (protein homeostasis) (Wolff et al. 2020).  
 Semaglutide Boom. Adding to aging clocks and aging 
biomarkers as actionable approaches to longevity is the 
surprise that 3% of Americans may already be taking an 
anti-aging drug without knowing it. Named Science’s 2023 
breakthrough of the year, semaglutide weight loss drugs 
(GLP-1 agonists such as Wegovy, Ozempic) may also have 
cardiac benefits and an anti-inflammatory role in the brain-
gut axis (Wong et al. 2023). Semaglutide is a medication 
which mimics the GLP-1 (glucagon-like peptide-1) hor-
mone released in the gut to help the body feel full, produc-
ing insulin and reducing blood sugar (glucose). The digital 
health divide is a pressing concern as on the one hand, 
Wall Street analysts estimate that worldwide spending on 
semaglutide, mostly not covered by insurance, could reach 
$100 billion by 2035 (Adegbesan 2023). On the other 
hand, over a billion people worldwide (one in eight) cannot 
afford basic healthcare (WHO 2023). Implementing lon-
gevity protocols to extend healthy lifespan could become 
an ethical imperative and a matter of equity, access, equiv-
alency, and novel business models.  
 Longevity – There’s an app for that~! The longevity 
revolution could be by app – implemented with Health 
Agent wearables, sensors, patches, apps, and 3D printers, 
monitored by longevity physicians, with digital twin part-
ners (virtual patient simulations). Wearables capturing 
temperature, sleep quality, and heart rate variability pro-
vide addressable early-warning signs for various patholo-
gies (Alavi et al. 2022), for example sleep quality predict-
ing type 2 diabetes onset by ten years (Komine et al. 2016). 
Technology-savvy populations suggest an uberized (wide-
spread accessible via mobile technology) approach to 
healthcare and longevity therapy delivery, as Deloitte con-
firms 90% worldwide mobile phone penetration in 2017 
(80% worldwide smartphone penetration; 81% in emerging 
markets) (Wigginton et al. 2017).  
 Forward-looking countries are targeting longevity as a 
government policy initiative with goals for healthy citizen-
ry with +5-year healthspans in Singapore (the sixth “Blue 
Zone” country) and Arab states (Kalin 2023). Health is 
emerging as a competitive currency and basic human right 
for human potentiality (Nussbaum 2003). The XPRIZE 
Longevity Prize was announced in November 2023 for a 
therapeutic intervention to restore muscle, cognitive, and 
immune function 10-20 years in 65–80-year-old popula-
tions within one year. Longevity venture capital, although 
down from 2021 peaks, reported 101 deals and USD $1.1 
billion for the first three quarters of 2023, sector tracker 
Longevity.Technology reported (Newman and Belleza 
2023) and eleven dedicated Longevity venture funds were 
profiled by Forbes (Predin 2023). AI for social good could 
improve health outcomes and shift the stance of modern 



healthcare from reactive “sick care” to proactive wellness 
maintenance (Tomasav et al. 2020).  

Generative AI and Biology 

Natural language is the first area of demonstrable genAI 
progress, however, biology may be orders of magnitude 
more complex including because the “ruleset” is unknown. 
Whereas one of the largest open-source foundation models, 
LLaMA, has 65 billion parameters (learnable weights be-
tween entities) (MetaAI 2023), state-of-the-art protein 
models have 100 billion parameters (Chen et al. 2023), and 
genome language models may require even more. An ef-
fort could be made to formalize biological computational 
complexity classes (protein structure, protein-protein inter-
actions, genomes, pathways) from earlier graph visualiza-
tion starting points (Cirillo et al. 2018, Kugler et al. 2010). 
 Protein Language Models. Life science AI foundation 
models include BioMap’s xTrimoPGLM (cross-modal in-
teractome and multiomics transformer) with 100 billion pa-
rameters as mentioned (Chen et al. 2023) and MetaAI’s 
ESM-2(15B) (evolutionary stochastic model) with 15 bil-
lion parameters (Lin et al. 2022). They represent the pro-
tein language internally as opposed to beginning with evo-
lutionary MSA (multiple sequence alignment) reads as in 
AlphaFold2 and RoseTTAFold. Digital biology platforms 
such as NVDIA’s BioNeMo (biological neural modeling) 
offer pretrained drug discovery models as a cloud service.  
 Genome Language Models. AI foundation models are 
being developed in genomics for sequencing and analysis. 
In sequencing, DeepVariant is a Stanford-led transformer 
project that holds the Guiness Book of World Records for 
the fastest human genome sequenced (5 hours 2 min, on 16 
Mar 2021, still unbeaten as of February 2024). The Deep-
Consensus project uses a gap-aware sequence transformer 
to reduce read errors by 42% as compared with hidden 
Markov models as the traditional sequence-reading method 
(Baid et al. 2023). DNAGPT is a transformer performing 
sequence classification through numerical regression and a 
comprehensive token language (Zhang et al. 2023). 
 In genome analysis, there are various projects focused 
on building genome-scale language models such as Hye-
naDNA, training on whole-genome datasets to model indi-
vidual mutations (Nguyen et al. 2023). The idea is to be 
able to prompt ChatGPT with an entire human genome to 
identify mutational profile risks and interventions (e.g. 
which aging clocks to start with in precision health pro-
grams). Other projects include DNABERT for making pre-
dictions about transcription factor binding sites, scBERT 
trained on scRNA-Seq (single cell RNA sequencing) data 
to predict gene-gene interactions, and Enformer for making 
predictions about long-range interactions in the genome. 
AlphaMissense uses protein structures to predict pathogen-

ic missense mutations (of 71 million human mutations, 
32% are pathogenic) (Cheng et al. 2023). Missense muta-
tions comprise about 58% of all human mutations, fol-
lowed by nonsense (10%), frameshift (8%), splice (6%), 
insertion-deletion (5%), and other (13%). 

Digital Twins and Biology 

A digital twin is a virtual representation of a physical ob-
ject, person, or process, estimated by McKinsey to be a 
$48.2 billion industry in 2026 (Borden 2023). Digital twins 
are used to model manufacturing operations and infrastruc-
ture. Singapore completed the first digital twin of an entire 
country (Virtual Singapore) in 2022. In healthcare, virtual 
patient models are used for procedure simulation, medical 
education, clinical research, and drug development. Clini-
cal trial simulations of millions of genAI-created virtual 
patients might be routine in the future.  
 On the one hand, a long-term vision supports the idea of 
there being biomedical digital twins for the world’s 8.1 bil-
lion humans. Each person has an ID number, a MAC ad-
dress (phone), and a digital twin, immediately implicating 
new levels of data privacy. On the other hand, healthcare 
digital twins are not an immediate possibility given the 
complexity of biological systems, the need for large-scale, 
high-quality data, and the potential for model inaccuracies. 
 GenAI Digital Patient. One project proposes a genAI 
digital patient platform using two neural networks (Barbi-
ero et al. 2023). A GNN forecasts clinically relevant end-
points (e.g. blood pressure) and a GAN (generative adver-
sarial network) critically examines these endpoints with 
patient omics data (genomics, transcriptomics, prote-
omics). The method was tested on the pathological effects 
of overexpressing ACE2 in cardiovascular function across 
different signaling pathways. Another project proposes pa-
tient2vec as a longitudinal EHR systems, treating EHR 
systems at the level of math instead of data for expedient 
analysis and interoperability (Zhang et al. 2018). A block-
chain-based system for healthcare digital twins has also 
been outlined (Akash and Ferdous 2022).  
 Longevity Twins. Homeostatic health could be Turing-
complete (a format running on any platform, biological or 
machine; digital twin or biological counterpart). Digital 
twins started for longevity medicine could extend to future 
BCI (brain-computer interface) and connectome projects. 

Web3 Blockchains  

Blockchains are secure distributed ledger systems provid-
ing a database for resource allocation and an immutable 
record of event histories. Cryptocurrencies is one applica-
tion of blockchains but there are others. Blockchain sys-
tems are a foundational information technology with dif-



ferent implied levels, one for monetary exchange (spot-
market transactions and over-time contracts), and another 
for large-scale system design using economic principles to 
produce non-economic outcomes, e.g. health (Swan 2015). 
 The general concept of blockchain design is using al-
ways-on global decentralized networks as the basis for 
peer-provided infrastructure to supply and maintain public 
goods such as an economic system, file storage, IP man-
agement, and longevity twins. Notably, blockchains are the 
first example of planetary scale democracy as a decentral-
ized multiagent system of voting and governance coordi-
nating millions of participants via consensus algorithms. 
 Economics is a language with its own syntax of value 
creation, discovery, preference, and exchange. Blockchain 
development methods consider resource-aware program-
ming languages (resource typed languages) and economic 
markup language (EML). Digital currencies have rich fea-
tures that can be exploited in design. One is demurrage 
currencies which expire, forcing users to spend and not 
hoard the token. This applies to budgets and HSA (health 
savings) accounts, and also health which can be conceived 
as a “use it or lose it” currency that must spent or lost. 

Blockchains in Biology  
Blockchains are used in health and biology for secure data 
transfer, supply chain logistics, chain-of-custody tracing, 
and clinical trials. MediLedger is a global pharmaceutical 
supply chain blockchain (led by Pfizer, Amgen, and Gile-
ad) completing a pilot program with the U.S. FDA in 2023 
towards the 2023 Drug Supply Chain Security Act. Triall is 
a clinical trials blockchain platform conducting a two-year 
multi-center pulmonary arterial hypertension clinical trial 
with the Mayo Clinic. BloodChain is a blood donation 
network managed with blockchains.  
 Genome Blockchains. The scale of contemporary sci-
ence (million-patient studies involving 30 GB whole-
human genome files from sixteen sites (Bellenguez et al. 
2022)) implies new models for its conduct. Biology sci-
ence labs must consider genome sequencing, storage, 
transfer, and analysis; together with ownership, access, and 
privacy concerns. In response, a Toshiba-Tohoku Universi-
ty project transmitted whole-human genomes for 24 people 
in real-time secured with quantum cryptography (Tohoku 
University 2020). The direct-to-consumer whole-human 
genome sequencing company Nebula Genomics mints an 
NFT for a sequenced genome (with genomes.io).  
 DeSci and Longevity DAOs. Blockchain efforts are fur-
ther used in DeSci (decentralized science) models for car-
rying out internet-scale bioinformatics. Public databases 
and network-based code and AI analysis tools suggest a 
larger scale for the conduct of science. Such “web labs” are 
accessible to anyone and complement traditional corporate 
and university-based “wet labs.” In DeSci models, scien-

tists can have more control over research agendas, IP own-
ership, rights licensing, remuneration, and fundraising. 
Science is a public goods interest and DeSci could help ac-
celerate scientific discovery, particularly in the urgency to 
develop worldwide personalized longevity interventions. 
Example projects include LabDAO (an open science col-
laboration community) and VitaDAO (specific to longevity 
research). (A DAO is a distributed autonomous organiza-
tion, an entity formed with blockchain-based smart con-
tracts, with some level of automated administration.) 

Blockchain Healthcare Digital Twins  
The healthcare delivery system of the future could be one 
orchestrated by health agents and healthcare digital twins, 
as physicians oversee the smart health ecosystem by app 
(e.g. Virtusan), assessing data collected with wearables and 
pre-processed by health agents. More sophisticated moni-
toring over time could include on-skin patches, smart-toilet 
analytics, and automated smoothie dispensers. Longevity 
trackers could leverage the positive reinforcement success 
of fitness trackers “You helped extend your healthspan!” 
 Blockchains are suggested as a platform for healthcare 
digital twins for several reasons. First is the usual notion of 
blockchains for secure multi-party access to a single un-
changeable event history. Second is proof attestation to 
track the efficacy of interventions (insurance companies 
are already considering using aging clocks in actuarial ta-
bles). Third is an interoperable overlay for integrating mul-
tiple omics data streams and EHRs. Fourth is blockchain 
design principles for modeling non-economic aspects such 
as homeostasis as its own “bioeconomy.” Fifth is the abil-
ity to add genAI technologies to the secure health stack 
with Health Agents as the “user” of the blockchain 
healthcare digital twin; blockchains both track and facili-
tate the deployment of AI agents. Health Agents could help 
the digital twin learn its own longevity protocol.  
 Blockchain Healthcare Digital Twins for Longevity. The 
complexity of pathways and processes in the human body 
can be modeled in the blockchain healthcare digital twin as 
a multiscalar homeostatic economy of wellness and dis-
ease. A blockchain system can instantiate the body, label-
ing entities as wallet addresses, giving them relevant bio-
currency balances, and modeling their activity with smart 
contract transactions. The schema allows any level of drill-
down and roll-up for views of the system per the hashing 
structure (e.g. organ, tissue, cellular level). One top-level 
Merkle root can call the entirety of the body. One lowest-
level transaction could record the amount of insulin-
facilitated glucose release into a cell. The complex path-
ways of the systems biology of aging (Furber 2019) and 
their related interventions could be modeled with a block-
chain smart contract system. As Virtual Singapore’s first 
digital twin of a country, the first full digital twin of the 



human can be imagined. The eleven-organ aging clocks 
could have avatorial representation sitting around “the con-
ference table of the body” as the user interface, genAI stat-
ing their agenda based on real-life biomarker levels. A sim-
ilar idea is forest and ocean avatar representations at the 
UN, with accurately AI-voiced concerns per aggregated 
biosensor-collected data (e.g. VOCs and plankton load). 
 Longevity State Machine. A smart contract system is 
implicated to automate blockchain healthcare digital twins. 
This could be via Ethereum or Polkadot, “world computer” 
smart contract platforms. These state machines provide 
“block space as a service,” namely secure computation and 
event-recording. Proof-of-stake (randomized participant-
based) mining systems provide a greener alternative to 
costly Bitcoin proof-of-work mining.  
 Smart contract state machines update wallet balances per 
transactions. Wallets may contain any cargo such as cryp-
tocurrencies, NFTs (digital assets), computer memory, 
identity documents (digital passport), or biocurrencies used 
by Health Agents to manage longevity programs in 
healthcare digital twins. Independent observers (oracles) 
take readings (e.g. from wearables, blood tests, patches, 
toilets, and apps), sending attested measurements to the 
smart contract system. 
 Biocurrency Transactions. In a biosystem, there are 
many different “biocurrencies” circulating to conduct ho-
meostatic activities. The longevity twin has wallet address-
es for hundreds of blood biomarkers (e.g. glucose, insulin, 
homocysteine, HS-CRP, Hb1ac, lymphocytes); everything 
seen on a blood test. For example, a homocysteine wallet 
might have an initial balance of 9.0, which is too high, as 
the desired level of the biomarker may be 5.0. The target 
protocol is written as a smart contract with logic about the 
course of action. The intervention to reduce homocysteine 
is folate. Each intervention, supplement, or prescription 
drug could likewise have a wallet address and balance that 
is managed with smart contracts. Given the homocysteine 
wallet balance of 9.0, the instruction is for a daily regimen 
of 500 mg of folate to start. The folate wallet is activated 
with a transaction to dispense 500 mg into the smart 
smoothie, decrementing the overall monthly balance of 
50,000 to 49,500. Wallet entities may have their own bio-
currencies (e.g. homocysteine, folate), all of which can be 
converted to BioCoin or some universal currency.   
 Biowallets and Longevity Payment Channels. Health 
Agent smart contracts could manage longevity interven-
tions in off-chain payment channels (contractual interac-
tion sequences) for daily interactions settled to the main 
health chain on a weekly or monthly basis. In the payment 
channel structure, the homocysteine pathway is a wallet. 
Homocysteine is a measurable biocurrency and folate is an 
intervention-currency. Smart contracts obtain measures of 
pathway biocurrencies from connected sensors and distrib-
ute intervention-currencies as a result. The biocurrencies in 

the homocysteine pathway include B vitamins in various 
forms. The smart contract can test and manage the different 
forms and timing of B vitamin interventions through the 
interactive multi-currency biowallet. The payment channel 
orchestrates the folate balance acting on the homocysteine 
pathway to reduce the homocysteine balance. Homocyste-
ineCoin and FolateCoin are readily convertible to meta-
tokens LongevityCoin and BioCoin.  
 Bioconsensus. Health Agents can finetune the different 
biocurrencies with payment channel smart contracts to 
learn the optimal personalized longevity protocol. Ideally 
the system can self-learn its homeostasis. Smart contract 
coordinated biowallets could be rewarded by Health Agent 
reinforcement learning mechanisms to reach their own bio-
consensus as to the truth state constituting optimal longevi-
ty. The biowallet is a useful binary mechanism to target 
positive and negative behavior, for example reversing dis-
ease as “bad player behavior” by assigning negative wallet 
balances to missense mutations and transposon activations 
that are targeted by the “good actor behavior” of epigenetic 
methylation to earn token and pay down negative wallet 
balances. Health Agent blockchain longevity twins could 
be tested with Lightning Network payment channels. 
 Aging Clocks Registered at Birth. As biological pro-
cesses peak and decline at various stages, some even be-
fore birth, a full life-cycle longevity program could be used 
to register aging clocks as wallets at birth. As life proceeds, 
balances can be updated to compare biological and chrono-
logical age and apply interventions. Blockchain healthcare 
digital twins are further suggested as the suite of patches 
and in-body electronics may become more extensive with 
subdural implants, Neuralink-type BCIs (brain-computer 
interfaces), and medical nanorobots. Security is crucial as 5 
million people have implanted pacemakers, some internet-
connected for real-time remote monitoring, automated pac-
ing therapies, and software updates. 

Health Agents 

Health Agents are the concept of an AI system tasked with 
precision human health and longevity. Such a personalized 
health system app-tool entails dialogue and data capture at 
the human-AI interface level and agent-based activity at 
the AI infrastructure level to access information, model 
health, and orchestrate intervention. Health Agents are 
qualitative and quantitative, interacting at both the human-
consumable content-level of personalized health and lon-
gevity intervention, and the AI-usable formal-level of 
mathematics describing homeostatic health (possibly in-
volving category theory and other formalisms). A digital 
twin system is implicated as a virtual model of individual 
health, secured by blockchain smart contracts, user-
permissioned for agents to learn by sharing federated data 



(as in vehicular blockchains of self-driving networks) and 
for health care plan or societal level aggregation. For preci-
sion longevity, the aim is to have a formal statement of 
health (homeostasis) which can be learned by AI Health 
Agent systems. The results could be connected to aging 
clock, biometrics, and tracking data for a longevity physi-
cian to review at regular intervals in the Longevity App.  

Pathway2vec 

Aging clocks research has identified pathways not tradi-
tionally targeted by longevity interventions (Oh et al. 
2023), hence a first line of investigation for Health Agents 
could be implementing aging clocks in a pathway2vec pro-
gram. Pathway2vec is representing biological pathways as 
vectors for input to ANNs, in a precedence of approaches 
beginning with word2vec (Mikolov et al. 2013), and in-
cluding math2vec (vector representations of equations), 
gene2vec, SNP2vec, mut2vec, and disease2vec. Related 
“cancer2vec” approaches use cluster embedding to identify 
individual cancer risk (Choy et al. 2019) and patient-
specific molecular patterns of cancer (Pfeifer et al. 2022), 
which could likewise model personalized aging-clock tar-
gets in longevity intervention. One existing pathway2vec 
project defines a vector to represent the pathway relation-
ship for pairs of drugs and genes that belong to the same 
pathway (Yamagiwa et al. 2023). Another pathway2vec 
project implements a phenotype-driven (instead of target-
driven) approach for identifying compounds to counteract 
disease effects (Gonzalez et al. 2024). 

Longevity Protocol Testing 

The next steps in the realization of precision longevity 
medicine could be testing and tailoring proposed protocols 
for personalized intervention (e.g. Partridge et al. 2020 p. 
516, Houston 2018 pp. 86-87, Sinclair 2019 p. 304, John-
son 2023, p.1). This entails blood biomarker tests to assess 
an individual’s ageotype profile of accelerated aging using 
eleven-organ system aging clocks (Oh et al. 2023) and oth-
er aging clocks (e.g. epigenetic) (Horvath et al. 2024).  

Risks and Limitations 

The biggest risk in the AI Health Agents proposal is that 
although technology development is proceeding quickly, 
the implementation of healthy longevity programs may be 
too late to adequately respond to aging demographics. 
Longevity scholars therefore promote the “escape velocity” 
idea of deploying immediate interventions to buy enough 
time until more complete solutions are available (de Grey 
2004). Although a contemporary lens sees longevity as a 
technology, it may not be easy to reprogram biology. There 

are social challenges to traditional ideas of health, life, and 
care, along with regulatory hurdles and healthcare system 
adoption constraints. Further, the use of genAI in biology 
and medicine has a new set of risks related to data quality, 
interpretability, and ethics (hallucinations and bias), which 
requires attention before Health Agents are deployed.  

Conclusion 

The build-out of the AI infrastructure is proceeding quick-
ly, particularly to facilitate the study of biology. Biocom-
plexity poses a formidable challenge, but AI methods have 
encouraging results in the third wave of digitization. The 
goal is to harness the new tools of digital biology to access 
a larger scope of investigation with synthesis between are-
as and actionable steps. This work introduces the concept 
of Health Agents (personal AI health stewards realized 
with blockchain digital health twins) as a new idea in hu-
man-AI collaboration and intelligence amplification. 
Health Agents provide an interface for not only qualitative 
knowledge access, but more importantly “non math speak-
er” access to the growing intensity of formal methods in 
the computational infrastructure.  The immediate applica-
tion of Health Agents is healthy longevity, starting to be 
conceived as a technology, readily implementable and op-
timizable like any other. 
 Aging is starting to be seen as a treatable pathology as 
The World Health Organization’s International Classifica-
tion of Diseases now lists a diagnostic category for “ageing 
as-sociated decline in intrinsic capacity.” Organism-level 
levers may be employed to address metabolism, inflamma-
tion, plaques, autophagy (recycling), and senescence 
(zombie cells). 
 Healthy Longevity and Society. Longevity medicine 
aims to extend the healthy lifespan of humans by prevent-
ing and treating age-related diseases and has many poten-
tial benefits for society. First is improving the quality of 
life and well-being of older adults and families by reducing 
the burden of chronic diseases, disability, and dependency 
(Fried et al. 2022). Second is enhancing the productivity 
and contribution of older adults to the economy, society, 
and innovation, by enabling people to work longer, volun-
teer, mentor, and participate in civic activities (Accius et 
al. 2022). Third is reducing the healthcare costs associated 
with aging, by shifting the focus from treating diseases to 
promoting health and preventing disease (OECD 2019). 
Fourth is creating new opportunities and markets for vari-
ous industries, such as biotechnology, pharmaceuticals, 
health care, education, and entertainment that cater to the 
needs of older adults (Ng and Indran 2024). Longevity 
medicine realized with AI tools such as Health Agents is a 
mindset and health program that could help individuals and 
society realize longer, healthier, and happier existence. 



References   

Accius, J.; Ladner, J.; and Alexander, S. 2022. The Global Lon-
gevity Economy. AARP. 

Adegbesan, A. 2023. Obesity Drug Market Set to Hit $100 Bil-
lion by 2035, BMO Says. Bloomberg News. 

Ahadi, S.; Zhou, W.; Rose, S. M. S.; et al. 2020. Personal aging 
markers and ageotypes revealed by deep longitudinal profiling. 
Nat Med 26(1): 83–90.  

Akash, S. S.; and Ferdous, M. S. 2022. A Blockchain Based Sys-
tem for Healthcare Digital Twin. IEEE Access 10:50523–50547.  

Alavi, A.; Bogu, G. K.; Wang, M.; et al. 2022. Real-time alerting. 
Nat Med 28(1): 175–184.  

Arkani-Hamed, N.; Cao, Q.; Dong, J.; et al. 2024. NLSM ⊂ Tr(φ 
3). arXiv preprint arXiv:2401.05483. 

Baid, G.; Cook, D. E.; Shafin, K.; et al. 2023. DeepConsensus. 
Nat Biotechn 41(2): 232–238.  

Barbiero, P.; Torne, R. V.; and Lio, P. 2023. Graph representation 
forecasting: towards a digital twin. arXiv preprint 
arXiv:2009.08299v1. 

Basher, A.; and Hallam, S. J. 2021. Leveraging heterogeneous 
network embedding for metabolic pathway prediction. Bioinform 
37(6): 822–829.  

Bautmans, I.; Knoop, V.; Thiyagarajan, J.A.; et al. 2022. WHO 
working definition of vitality capacity for healthy longevity moni-
toring. Lancet Healthy Longev 3(11): e789–e796. 

Bellenguez, C.; Kucukali, F.; Jansen, I. E.; et al. 2022. New in-
sights into the genetic etiology of Alzheimer’s disease. Nat Genet 
54(4): 412–436.  

Blagosklonny, M. V. 2023. Towards disease-oriented dosing of 
rapamycin for longevity: does aging exist or only age-related dis-
eases? Aging 15(14): 6632–6640.  

Barzilai, N.; Crandall, J. P.; Kritchevsky, S. B.; and Espeland M. 
A. 2016. Metformin as a Tool to Target Aging. Cell Metab 23(6): 
1060–1065.  

Bischof, E.; Zhavoronkov, A.; Moskalev, A.; et al. 2023. Longev-
ity Medicine 101. Lecture 9.  

Borden, K. 2023. What is digital-twin technology? McKinsey. 

Bordes, A.; Usunier, N.; Garcia-Duran, A.; et al. 2013. Translat-
ing embeddings for modeling multi-relational data. NeurIPS 
2787–2795.  

Bronstein, M. M.; Bruna, J.; Cohen, T.; and Velickovic, P. 2021. 
Geometric deep learning: Grids, groups, graphs, geodesics, and 
gauges. arXiv preprint arXiv:2104.13478. 

Chen, B.; Cheng, X.; Geng, Y.; et al. 2023. xTrimoPGLM: Uni-
fied 100B-Scale Pre-trained Transformer for Deciphering the 
Language of Protein. bioRxiv doi: 10.1101/2023.07.05.547496v1 

Cheng, J.; Novati, G.; Pan, J.; et al. 2023. Accurate proteome-
wide missense variant effect prediction with AlphaMissense. Sci-
ence 381(6664): eadg7492.  

Choy, C. T.; Wong, C. H.; and Chan, S. L. 2019. Infer related 
genes from large scale gene expression dataset. Front Genet Sec 
CG 9:682.  

Cirillo, D.; Ponce-de-Leon, M.; and Valencia, A. 2018. Algo-
rithmic complexity in computational biology: basics, challenges 
and limitations. arXiv preprint arXiv:1811.07312. 

Couzin-Frankel, J. 2023. Obesity meets its match. Science.  

de Grey, A. D. N. J. 2004. Escape velocity: Why the prospect of 
extreme human life extension matters now. PLoS Biol 2(6): e187.  

de Haan, P.; Cohen, T.; and Welling, M. 2020. Natural Graph 
Networks. arXiv preprint arXiv:2007.08349. 

Fahy, G. M.; Brooke, R. T.; Watson, J. P.; et al. 2019. Reversal of 
epigenetic aging and immunosenescent trends in humans. Aging 
Cell 18(6): e13028.  

Fried, L. P.; Wong, J. E. L.; and Dzau, V. 2022. A global 
roadmap to seize the opportunities of healthy longevity. Nat Ag-
ing 2: 1080–1083.  

Furber, J. D. 2019. Systems Biology of Human Aging – Network 
Model. Innov Aging 3(Suppl 1): S973.  

Gemini Team, Google. 2023. Gemini: A Family of Highly Capa-
ble Multimodal Models. arXiv preprint arXiv:2312.11805v1.  

Goncharov, S.; and Nechesov, A. 2023. Axiomatization of BC 
Theory. Math 11: 2966.  

Gonzalez, G.; Herath, I.; Veselkov, K.; et al. 2024. Combinatorial 
prediction of therapeutic perturbations using NNs. bioRxiv doi: 
10.1101/2024.01.03.573985. 

Gschwind, A. R.; Mualim, K. S.; Karbalayghareh, A.; et al. 2023. 
An encyclopedia of enhancer-gene regulatory interactions in the 
human genome. bioRxiv doi: 10.1101/2023.11.09.563812.  

Gu, A.; and Dao, T. 2023. Mamba: Linear-Time Sequence Mod-
eling with Selective State Spaces. arXiv preprint 
arXiv:2312.00752. 

Guarente, L.; Sinclair, D. A.; and Kroemer, G. 2024. Human tri-
als exploring anti-aging medicines. Cell Metab 36(2): 354-376. 

Gyanwali, B.; Lim, Z. X.; Soh, J.; et al. 2022. Alpha-
Ketoglutarate dietary supplementation to improve health in hu-
mans. Trends Endocrinol Metab 33(2): 136–146.  

Halevy, A.; Norvig, P.; and Pereira, F. 2009. The unreasonable 
effectiveness of data. IEEE intelligent systems 24 (2): 8–12.  

He, P.; Zhou, G.; Zhang, M.; et al. 2023. Improving temporal 
knowledge graph embedding using tensor factorization. Appl In-
tell 53:8746–8760.  

Houston, M. 2018. The role of noninvasive cardiovascular test-
ing. Ther Adv Cardiovasc Dis 12(3): 85–108.  

Horvath, S.; Singh, K.; Raj, K.; et al. 2024. Reversal of biological 
age in multiple rat organs by young porcine plasma fraction. 
Geroscience 46(1): 367–394. 

Ioannidis, V. N.; Song, X.; Manchanda, S.; et al. 2020. DRKG: 
Drug Repurposing Knowledge Graph for Covid-19.  

Johnson, B. 2023. Blueprint. https://blueprint.bryanjohnson.com/. 

Jumper, J.; Evans, R.; Pritzel, A.; et al. 2021. Highly accurate 
protein structure prediction with AlphaFold. Nature 596: 583–89.  

Kalin, S. 2023. Saudi Arabia Research on Aging. WSJ.  

Karpathy, A. 2017. Software 2.0. Medium.  

Katis, P.; Sabadini, N.; and Walters, R. F. C. 2008. On partita 
doppia. arXiv preprint arXiv:0803.2429v1. 

Katsumata, S.; Rival, X. and Dubut, J. 2023. A Categorical 
Framework for Program Semantics. arXiv preprint 
arXiv:2309.08822. 

Komine, T.; Takadama, K.; and Nishino, S. 2016. Toward Next-
Generation Sleep Monitoring. AAAI Spring Symposia 2016: Well-
Being Computing: AI Meets Health and Happiness Science. 

Kugler, H.; Larjo, A.; and Harel, D. 2010 Biocharts: a visual for-
malism for complex biological systems. JRSI 7(48):1015–1024.  



Li, L.; Zhang, X.; Jin, Z.; et al. 2023a. Knowledge graph comple-
tion method based on quantum embedding and quaternion inter-
action enhancement. Information Sciences 648(119548).   

Li, M. M.; Huang, K.; and Zitnik, M. 2022. Graph representation 
learning in biomedicine and healthcare. Nat Bio Eng 6: 1353–69.  

Li, N.; Haihong, E.; Shi, L.; et al. 2023b. LorenTzE: Temporal 
KGE. ICANN pp. 472–484.  

Lubana, E. S.; Brehmer, J.; de Haan, P.; and Cohen, T. 2023. 
FoMo Rewards. arXiv preprint arXiv:2312.03881. 

Matysek, A.; Sun, L.; Kimmantudawage, S. P.; et al. 2023. Tar-
geting impaired nutrient sensing via the sirtuin pathway. Ageing 
Res Rev 90:102029.  

MetaAI. 2023. LLaMA: A foundational, 65-bn-parameter LLM. 
https://ai.meta.com/blog/large-language-model-llama-meta-ai/. 

Mikolov, T.; Sutskever, I.; Chen, K.; et al. 2013. Distributed Rep-
resentations of Words and Phrases. arXiv preprint 
arXiv:1310.4546. 

Moqri, M.; Herzog, C.; Poganik, J. R.; et at. 2023. Biomarkers of 
aging for the identification and evaluation of longevity interven-
tions. Cell 186(18): 3758–3775.  

Newman, P.; and Belleza, C. 2023. Q3 2023: Longevity Invest-
ment Report. Longevity.Technology. 

Ng, R.; and Indran, N. 2024. Innovations for an Aging Society. 
Gerontologist 64(2):gnad015.  

Nguyen, E., Poli, M., Faizi, F.; et al. 2023. HyenaDNA: Long-
Range Genomic Sequence Modeling. arXiv preprint 
arXiv:2306.15794v1. 

Nussbaum, M. C. 2003. Capabilities as Fundamental Entitle-
ments: Sen and Social Justice. Feminist Economics 9(2-3): 33–59. 

OECD. 2019. The Heavy Burden of Obesity. oe.cd/obesity2019. 

Oh, H. S. H., Rutledge, J., Nachun, D.; et al. 2023. Organ aging 
signatures in the plasma proteome track health and disease. Na-
ture 624, 164–172.  

OpenAI. 2023. GPT-4 Technical Report. arXiv preprint 
arXiv:2303.08774v4. 

Orr, M. E.; Kotkowski, E.; Ramirez, P.; et al. 2024. A random-
ized placebo‑controlled trial of nicotinamide riboside. Gerosci-
ence 46:665–682.  

Partridge, L.; Fuentealba, M.; and Kennedy, B.K. 2020. The quest 
to slow ageing through drug discovery. Nat Rev Drug Discov 
19(8): 513–532.  

Pfeifer, B.; Saranti, A.; and Holzinger, A. 2022. GNN-SubNet: 
disease subnetwork detection with explainable GNNs. Bioinform 
38: ii120-ii126.  

Poli, M.; Massaroli, S.; Nguyen, E.; et al. 2023. Hyena Hierarchy: 
Towards Larger Convolutional LMs. arXiv preprint 
arXiv:2302.10866. 

Predin, J. M. 2023. Venture Capital Giants in The Billion-Dollar 
Quest for Longevity Breakthroughs. Forbes.  

Rabheru, K.; Byles, J. E.; and Kalache, A. 2022. How “old age” 
was withdrawn as a diagnosis from ICD-11. The Lancet 3(7): 
e457–e459.  

Rosen, R. 1991. Life itself: a comprehensive inquiry into the na-
ture, origin, and fabrication of life. New York: Columbia UP. 

Science China Life Sciences. 2023. Biomarkers of Aging 66: 
893–1066.  

Sinclair, D. A. 2019. Why We Age. New York: Atria.  

Soh, J.; Raventhiran, S.; Lee, J. H.; et al. 2023. The effect of gly-
cine administration on the characteristics of physiological sys-
tems. Geroscience 46, 219–239. 

Stokes, J. M.; Yang, K.; Swanson, K. 2020. DL Approach. Cell 
180(4): 688-702.e13.  

Sun, Z.; Deng, Z.; Nie, J.; and Tang, J. 2019. RotatE: KGE by 
Relational Rotation in Complex Space. arXiv preprint 
arXiv:1902.10197. 

Swan, M. 2015. Blockchain: Blueprint for a New Economy. Se-
bastopol CA: O’Reilly Media.  

Swan, M.; Kido, T.; Roland, E.; and dos Santos, R. P. 2023. Math 
Agents: Computational Infrastructure, Mathematical Embedding, 
and Genomics. arXiv preprint arXiv:2307.02502. 

Tohoku University. 2020. World’s First Quantum Cryptography 
Transmission of Whole Genome. Press Release. 6 Feb 2020.  

Tomasev, N.; Cornebise, J.; Hutter, F.; et al. 2020. AI for social 
good. Nat Commun 11: 2468. 

Trouillon, T.; Welbl, J.; Riedel, S.; et al. 2016. Complex embed-
dings for simple link prediction. arXiv preprint 
arXiv:1606.06357. 

United Nations. 2017. World population projected to reach 9.8 
billion in 2050, and 11.2 billion in 2100. The 2017 Revision.  

Verdon, G.; McCourt, T.; and X. 2019. Quantum Graph Neural 
Networks. arXiv preprint arXiv:1909.12264. 

Wigginton, C.; Curran, M.; and Brodeur, C. 2017. Global mobile 
consumer trends, 2nd edition. Deloitte.  

Wigner, E. P. 1960. The unreasonable effectiveness of mathemat-
ics in the natural sciences. Commun Pure Appl Math 13(1): 1–14.  

Wolff, C. A.; Reid, J. J.; Musci, R. V.; et al. 2020. Differential 
Effects of Rapamycin and Metformin. J Gerontol A Biol Sci Med 
Sci 75(1): 32–39.  

Wong, C. K.; McLean, B. A.; Baggio, L. L.; et al. 2023. Central 
glucagon-like peptide 1 receptor activation. Cell Metab S1550–
4131(23): 00420–5.  

World Health Organization. 2023. Primary Health Care.  

Wu, Y. 2023. A Category of Genes. arXiv preprint 
arXiv:2311.08546v1. 

Xu, C., Nayyeri, M., Chen, Y.-Y.; and Lehmann, J. 2020. KGE in 
Geometric Algebras. arXiv preprint arXiv:2010.00989.  

Yamagiwa, H.; Hashimoto, R.; Arakane, K.; et al. 2023. Analogy 
Tasks in BioConceptVec Biological Pathways. IEICE 123(91).  

Yang, T.; Wang, Y.; Sha, L.; et al. 2022. Knowledgebra. ML and 
Knowl Extr 4(2): 432–445.  

Zhang, D.; Zhang, W.; and Zhao, U. 2023. DNAGPT: A General-
ized Pre-trained Tool for DNA Sequence Analysis. arXiv preprint 
arXiv:2307.05628. 

Zhang, Q.; Wang, R.; Yang, J.; and Xue, L. 2022. KGE Reflec-
tion transformation. Knowledge-Based Systems 238 (107861).  

Zhang, S.; Tay, Y.; Yao, L.; and Liu, Q. 2019. Quaternion 
Knowledge Graph Embeddings. arXiv preprint 
arXiv:1904.10281. 

Zhou, H.; Wang, W.; Jin, J; et al. 2022. GNN for PPIs. Molecules 
27(18): 6135.  

Zhu, Y.; and Shimodaira, H. (2024). Block-Diagonal Orthogonal 
Relation for Knowledge Graph Embedding. arXiv preprint 
arXiv:2401.05967.  


