The conceptualization of time in computing

Melanie Swan

Research Fellow, MS Futures Group, PO Box 61258
Palo Alto, CA 94306, USA, +1-415-505-4426

m@melanieswan.com

Abstract

There are differences between the conceptualization of time in computing systems and the human conceptualization of time. At the most basic level in computing, time is synonymous with performance and speed. At the next level in computing, there are “more kinds of time” than in the human and physics perspective where time is primarily continuous. In computing, time may be discrete, synchronous and asynchronous, absolute and relative, and not elapsing at all.

Computing is now making time even more malleable as a side effect of the quest to develop concurrent systems (multi-cores, multi-processors, and cluster, grid, and cloud computing), in at least four ways. One technique is using functional languages such as Haskell, LISP, Scheme, Clojure, and F# where sets of things and processes may not need to be temporally ordered. A second method is enhancing existing computer paradigms with new commands like ‘happensbefore’ and concurrency control mechanisms like ‘lock free queues’ to manage multiple threads of code operating simultaneously. A third means is creating new models with less time dependency like MapReduce which automatically parallelizes large data problems into finding all possible answers (‘map’), and determining relevancy (‘reduce’). A fourth technique is extending alternative models such as clock free methods and asynchronous computing, restructuring problems to be distributed, which may be quicker and more energy efficient.

The building of intelligent systems is a special problem in computing. There are many approaches ranging from attempts to model human thinking, including the conceptualization of time, to attempts to build intelligent systems from scratch. All models might benefit from incorporating biological time models such as temporal synchrony, the notion of a high-level background synchronization of processes.

Computing approaches to contemporary problems like concurrency and building intelligent systems are extending man’s ability to manipulate time. Computers are already great time-savers, and may be exploited ultimately at many other levels to further allow humans to harness and manage time, in effect creating more time.

1The conceptualization of time in computing

1Abstract

2Introduction

2Time and contemporary computing

2Time models used in computing

3Contemporary computing theme: concurrency

3Approaches to concurrency

31. Use functional languages

42. Enhance existing computing paradigms

53. Create new models with less time dependency

54. Extend alternative models

6Time and intelligence

6Time in specific computation problems: characterizing human intelligence

7Time in specific computation problems: building intelligent systems

8Philosophy of computer science

9Conclusion

9Acknowledgements

9References

Introduction

· How, if at all, is time different in computing than in ‘real life’?

· In fact, there are difference between the conceptualization of time in computing systems and the human conceptualization of time

· Limitations of man: visible light, time scales (in man’s-eye view the normal range is the blink of an eye (20 ms) to a human lifetime)
· As with EMS, tools facilitate access other realms (image: femtosecond chart)
· In time too, tools (mainly computers) extend human access to other realms

· Isolated examples: LongNow 10,000 year clock, Iroquois constitution: consider how our actions will impact the 7th generation to come, ex Brian Eno/Oxford planting grove to replace beams

· Method: look at time and computing – how is time treated literally and conceptually. Interview computer science experts re: time models and contemporary topics; review existing philosophy of computer science for conceptualization of time
Time and contemporary computing

Time models used in computing
· Discrete time vs. continuous time (the traditional human and physics perspective)

· Time is not conceptualized in computing like an elapsing quantity; time is thought of in terms of system performance and the number of operations that can be carried out in a given timeframe
· No time: HALT / NO-OP (Dykstra), no-op is a computer instruction that takes up a small amount of space but specifies no operation (used as a placeholder)
· The HALT instruction suspends CPU operation until an interrupt or reset is received. While in the halted state, the processor will execute NO-OPs to maintain memory refresh logic
· Absolute time and relative time (time-independent event-driven systems)
· Synchronous and asynchronous systems

· Synchronous Newtonian inertial frame; synchronous time, one clock, all operations synchronized to one clock, no step continues until the clock ticks again

· Two synchronous systems that have to synchronize; examples: auto-tune (the first time machine language is run on hardware), turbines (analog designs with phase lock loops)
· Asynchronous systems: multiple reference frames, different processes have their own clock, not synchronizable, no simple transformation to get in sync
· Relativistic: 2 clocks, with different viewpoints

Contemporary computing theme: concurrency
· Now is an interesting ‘time’ because ‘time’ is being considered in new ways in computing due to the move to concurrency
· Big shift to concurrency under way because current chips at 3 Ghz speeds have maxed out the thermal curve and cannot go any faster
· 3 Ghz refers to clock speed - the small crystal oscillator that sets the basic rhythm used throughout the machine; the clock is ticking at 3 billion times a second; every action takes place in steps that are 3 billionths of a second long, including both simple data transfer and complex calculations
· Definition - what is parallelism: synchronizing concurrent access to shared memory by multiple threads to ensure that the right operations are taking place at the right time, without interference or disruption, at high performance
· Examples: multi-core chips and multi-processor computers have multiple processing elements within a single machine, while clusters, MPPs, and grids use multiple computers to work on the same task (massive parallelism, multi-threaded applications); GPUs, distributed, cloud

· Examples: Google estimated to have over 450,000 servers to run its web index,
 Facebook: 2000 machines (1200 machines with 8 cores each and 800 machines with 16 cores each), 12 TB per machine, 21 PB storage per cluster, 15 MapReduce tasks per machine,
 Americans are watching TV 5 hrs per day on average and streaming 9 hours of video per month from Netflix,
 35 hours of video per minute is being uploaded to YouTube

Approaches to concurrency
1. Use functional languages

2. Enhance existing computer paradigms
3. Create new models with less time dependency

4. Extend alternative models
1. Use functional languages

· Functional languages call mathematical functions as opposed to the widely used imperative programming style which focuses on changes in state (side effects)

· Side effects means that the same expression can result in different values depending on the state of the executing program; difficult to predict program outcomes

· Examples of functional programming languages

· Haskell (mid-1980s), simplifies multicore programming - a set of things does not need to be temporally ordered; millions of lightweight Haskell threads can be automatically multiplexed onto Operating System threads with the same power to make blocking system calls
· LISP (1950s), Scheme, Clojure
· F#

· Issues with functional languages

· Setqueue assignment (overlaying metadata for queue management), rplacd (replace the tail of a list) (the two most obvious examples)
· Side effects – when introduced, the functional paradigm must be exited to deal with ordering issues; some languages have ways to manage this e.g.; in Haskell side effects can be contained in a monad (code module)

· Cache concurrency - when the local cache hasn’t written to memory yet (essentially a checksum on the memory address to see if any there were any errors during storage and transmission), the program must specify whether data should be addressed to a non-local cache or if all caches should be synced before a memory call
· Vector parallelism in GPUs (re-synching linearized vector processes)
2. Enhance existing computing paradigms
· Add commands and APIs to existing languages to accommodate concurrency at both the hardware and software levels
· Java: new java multithreading libraries like java.util.concurrent with commands like ‘happensbefore’
· C and other languages:
· add primitives
· create rendez-vous points called barriers for threads to catch up
· use APIs like openMP to multithread commands
· message-passing – de facto standard for communication between parallel processes by sending and receiving messages

· employ concurrency control mechanisms
· atomicity: use lock-based synchronization to isolate tasks from concurrent processes (potential problem: dead-locked queues)
· transactional programming, transactional memory – a layer underneath the regular programming language manages concurrency control for access to shared memory
· lock free queues (technique used in multi-threaded architectures to communicate between threads without fear of data corruption or performance loss due to threads waiting to use shared memory; example: push data into a queue using one thread and process it using a different thread)
· Comprehensive enhancements to general computing environments

· Use richer set of data types/sizes (e.g.; 1, 8, 16, 32, 64, 128+ bit Boolean, Integer, ASCII, fixed point, floating point, Unicode)
· Speed optimization cycles between initial and subsequent code compiling on a new machine (auto-tune), test multiple hardware configurations
· Support multiple levels of parallelism: bit/gate, instruction, data, and task/thread

· Make wider use virtual machines
· Switch to human-focused program design rather than hardware-centric, application-centric, formalism-centric
3. Create new models with less time dependency

· MapReduce: a distributed computing framework introduced by Google in 2004, programs written in this functional style are automatically parallelized
· Example: Google’s web index, a massively parallel operation; ‘map’ finds things, ‘reduce’ does things; ‘map’ finds all possible search candidates, reduce ranks them for relevance
· Related example: Big table: large-scale distributed file system, noSQL database replacement

· Go, a concurrent programming language, introduced by Google in 2007, designed for exceptionally fast compiling times with a theoretical framework based on CSP

· Communicating sequential processes (CSP)

· Language for describing patterns of interaction in concurrent systems (1985; Tony Hoare; Oxford, Microsoft Research)

· Establish a channel where work is done and runs, everything not waiting for channels can process in parallel.
· Use agents (goal-based) or actors to get parallelization auto-coordinated and auto-scheduled
4. Extend alternative models

· Aysnchronous computing: clock free methods and other models
· Sutherland - computer graphics pioneer, Sun, 2002

· Turing was designing asynchronous systems (1950s); abandoned due to greater ease of circuit design process with synchronous systems
· Expensive to distribute time signal to all parts of the chip
· Occupies a large part of the space on the chip
· 30% of its power consumption
· heat generation
· regular commands can be processed faster than the clock signal can be distributed to the other side of the chip, the transistor is large, have to push clock signals all over the chip; worse, sometimes have 4-phase or 10-phase clocks in major hardware systems (like Apollo?) that are open-gate systems
· Asynchronous systems
· Parts of the system can proceed at their own pace without waiting for the centralized clock
· Rely on local coordination circuits like the Rendezvous and the Arbiter
· Rendezvous circuit – indicates when the last of two or more signals has arrived

· Arbiter – traffic cop – blocks second request until first request complete, grants access to only one of simultaneous requests for the same resource

· Benefit – faster computing (do not have to wait for slowest process), less energy consumption (improved battery life)

· Notable current asynchronous systems examples? UltraSPARC IIIi processors from Sun
· Real-time operating systems driven by timer loop (event-driven, relative time)
· Not really ‘real-time’ as we think of real-time (instantaneous response)
· Example: airplanes, a dynamic system which needs a quick response, typically, 10-30 ms, a cascade and hierarchy in the system, a loop calls many smaller routines in cycle, everything has to be reduced to take place within 10-30 ms

· Example: computer games, main loop (render loop) checks inputs and renders the world visually; faster to render world without certain inputs (e.g.; joystick) but can’t update world until get these updates
· Tasks usually parallelized: one thread is the main character, another thread is the artificial intelligence (AI) that runs the other characters, a third thread is the world render loop; try to keep the render loop clear of other processes
.

[Summarize, wrap-up and transition….see literally how time is being handled in computer science and the contemporary shift to parallelism, but what about conceptually, philosophically, how is time regarded? Some clues can be found in time consideration problems that arise in special computing problems involving the mind and reasoning, creating intelligent systems, and in the philosophy of computer science]
Time and intelligence

Time in specific computation problems: characterizing human intelligence
(intro – machine intelligence has at least two sides: characterizing human intelligence and building intelligent systems which may or may not have human-like characteristics)

Indirect characterization through modeling
· Simple overview of time in two approaches (physics and computer science) to modeling the brain;
 a practical example of how different concepts of time lead to different solutions to the same problem.
· Explaining the brain

· Physics models (continuous time) explain the brain in terms of dynamics, without definite beginnings or ends; concerned about the dynamics of an event

· Computer science models (discrete time) explain the brain in terms of chains of events with beginnings and ends; concerned about the consequence of an event

· Neuronal modeling

· Physics: multi-compartmental conductance based (Hodgkin-Huxley like) model: concerned with matching waveforms of current and voltage traces with those that are measured in real neurons. This model helps us to understand how changes of the properties of excitable membranes over time result in changes of neuronal behavior over time. The computational complexity of these models is thought to prevent more than a few hundred neurons modeled in this way from being analyzed concurrently. Result: provides insight into the activity of single cells and small networks
· Computer science: integrate-and-fire model: does away with modeling conductances explicitly as functions of time and simply performs a weighted sum of its inputs at each time step. Here a time step is a discrete event whose duration is a parameter of the model. The simplicity of this model allows large networks to be constructed, which are useful for modeling systems of many thousands of neurons. Result: provides insight into the activity of large networks
Direct characterization through structural and functional analysis

· Structural (ultra-thin brain slices) and functional analysis (living nervous system analysis), to understand nervous system response and brain plasticity (necessary for learning)

Time in specific computation problems: building intelligent systems
· Consideration of the differences between human and computing conceptualizations of time in the creation of intelligent systems
· Computers have no concept of time, just processing cycles/speed, human time frames (fastest is 20 ms ‘blink of an eye’) seem very slow to computers
· Relative concepts of time could become increasingly important as computer time scales are so much faster than human time scales

· Computers do not have the experience of time or subjective time – example: flow state vs. watched pot (but machines don’t need to experience time the way humans do to ‘understand’ (e.g.; manage) the fact that humans may experience time in different ways
· Variability in human models of time: physics/computer science; MindTime past, present, future; certainty, probability, possibility

· How is the experience of time related to intelligence? One definition of intelligence involves pattern recognition and prediction. Patterns can be in space and/or time. Prediction involves a future time, but does not require a human-like conceptualization of time
· Hierarchical temporal memories

· Special case of quantum computing where time must go backwards
· Conclusion: none of these matter as they can all be modeled in computing systems, for example in some of these approaches…

Approaches: apply CS tools and temporal synchrony models from biology

· Temporal logic reasoning to manage human time fuzziness
· Temporal logic is the rules and symbols used for reasoning about time
· Simple example: requesting a resource, access is eventually given but not granted to two requestors simultaneously

· Complicated example: ‘do this by Friday’ – convert natural language to temporal logic, e.g.; emails with a time indication

· Temporal synchrony

· Spike timing is critical in human neurons; “neurons that fire together wire together;” the key dynamic is temporal, if a signal is received too late, it does not wire that area; if received slightly earlier, it connects; understanding the precise spike timing of individual neurons may be important for re-creating intelligent processes
· Biological/intelligent systems are organized around synchronization (time), not space; oscillators; neurons firing at 40 hz, schools of fish, music - all an attempt to synchronize … brains (discussion), individuals (politics), human thought (neurons) – one big biological clock of processes; get a phase transition when enough agents in synchrony; e.g.; neurons, could apply this model to supercomputing packets to get phase transition in intelligence

· Conclusion: biomimicry may not be necessary but may need some sort of temporally-dependent background function for synchronization in intelligent systems

Conclusion: time is different from the human and computing perspective but these differences can be modeled with computer science and incorporated in intelligence systems design (e.g.; temporal synchrony)

Philosophy of computer science
· Practitioner perspective - extent of philosophy of computer science and conceptualization of time is very basic! Mainly deals with classifying the problem as to the amount of computing resources necessary and how long it will take to solve
· Is it a P, NP, NP-complete, or NP-hard problem?

· Is it an N-squared algorithm or an exponential algorithm?
· How fast is the program/system running?
· What if Amazon web services crashes again? (one of the world’s largest cloud computing systems suffered an outage on April 20, 2011)

· Philosopher perspective

· Summary of focus areas in the Philosophy of Computer Science: nature of programs, semantics (meaning of programs), correctness proofs relative to specifications, computability (Church-Turing; essentially any machine can run any program), programming languages, legal and ethical issues (e.g.; copyright), and general questions (e.g.; is computer science a science?)

· Draws on traditional philosophical approaches and tools: ontologies like objects, the nature of objects, and epistemology; but mainly an attempt to conceptualize the field’s activity, no treatment of higher level concepts like time, influence on society
· Needed: a metaphysics of computer science that humanizes computing like Will Durant did for Philosophy or more specifically that Voltaire did for history, moving from the enumeration of battle dates (in this case what computer science does) to the meta-level of the story, themes, and human impact driving the activities including the relation to time
Conclusion
· The conceptualization of time in computer science is different with more dimensions (discrete time, no time, asynchronous time, etc.) than in the human and physics conceptualization of time (continuous time)

· Contemporary computer science is rethinking time and developing a host of new approaches to managing time at multiple levels in the context of concurrent systems
· The building of intelligent systems, a special problem in computing, attempts to model the human conceptualization of time in some approaches, and might benefit from incorporating biological time models (temporal synchrony)

· Computing approaches to contemporary problems like concurrency and building intelligent systems are inventing new ways to manipulate time; computers, already time-savers, may be exploited ultimately at many other levels to really allow humans to harness and manage time, and create more time

Acknowledgements
Monica Anderson, Forrest Bennett, Randal Koene, Michael Kolb, Piero Scaruffi
References
� http://en.wikipedia.org/wiki/Google_platform

� Borthakur D. Facebook has the world’s largest Hadoop cluster. Online text from the HDFS blog. May 9, 2010. Available at: http://hadoopblog.blogspot.com/2010/05/facebook-has-worlds-largest-hadoop.html. Accessed May 17, 2011.

� Frommer D. Here’s why YouTube wanst to spend $100 million on original video. Online text from the Business Insider blog. April 7, 2011. Available at: http://www.businessinsider.com/chart-of-the-day-tv-online-video-2011-4. Accessed May 17, 2011.

� Reisinger D. YouTube: 35 hours of video uploaded every minute. Online text from the cnet News blog. November 11, 2010. Available at: http://news.cnet.com/8301-13506_3-20022481-17.html. Accessed May 17, 2011.

� Patterson D, Asanovic K, Keutzer K and a cast of thousands, Computer Architecture is Back – The Berkeley View on the Parallel Computing Landscape, UC Berkeley, January 2007.

� Sutherland IE, Ebergen J. Computers without Clocks: Asynchronous chips improve computer performance by letting each circuit run as fast as it can. Scientific American Magazine. August 2002. Available at: http://www.scientificamerican.com/article.cfm?id=computers-without-clocks-2002-08. Accessed May 17, 2011.

� Larson S. Modeling Time in Computational Neuroscience. Online text from the Neurodudes blog. December 29, 2006. Available at: http://neurodudes.com/2006/12/29/modeling-time-in-computational-neuroscience. Accessed May 17, 2011.

� Koene R, Gildert S. Carboncopies – Realistic routes to substrate-independent minds. Kurzweil AI Accelerating Intelligence blog. August 9, 2010. Available at: http://www.kurzweilai.net/carboncopies-realistic-routes-to-substrate-independent-minds. Accessed: May 17, 2011.

� Fortunato V, Furey JT. The theory of MindTime: The relationships between Future, Past, and Present thinking and psychological well-being and distress. Personality and Individual Differences. 50(2011) 20-24.

� Turner R, Eden A. The Philosophy of Computer Science. The Stanford Encyclopedia of Philosophy (Summer 2009 Edition), Edward N. Zalta (ed.). Available at: http://plato.stanford.edu/entries/computer-science. Accessed: May 17, 2011.

Page 2

